Cho ba điểm A, B, C phân biệt sao cho A B → = k A C → . Biết rằng B nằm giữa A và C. Giá trị k thỏa mãn điều kiện nào sau đây?
A. k < 0
B. k = 1
C. 0 < k < 1
D. k > 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A nằm giữa B và C thì hai vecto A B → ; A C → ngược hướng nên k <0
Đáp án B
Áp dụng t/c dãy tí số bằng nhau, ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
Vậy \(k=\frac{1}{2}\)
Với ba điểm A, B, C phân biệt.Khi A nằm giữa B, C thì hai vecto A B → ; A C → ngược hướng nên
điều kiện cần và đủ để ba điểm A, B, C thẳng hàng và A nằm giữa B, C là: ∃ k < 0 : A B → = k A C →
Đáp án A
Giả sử z 1 ; z 2 là các nghiệm của phương trình a z 2 + bz + c = 0 với z 1 = 1
Theo định lí Viet ta có:
z 1 z 2 = c a ⇔ z 2 = c a 1 z 1 ⇒ z 2 = c a . 1 z 1 = 1
Bởi vì
z 1 + z 2 = - b a a = b ⇒ z 1 + z 2 2 = 1
Suy ra
z 1 + z 2 z 1 + z 2 1 ⇔ z 1 + z 2 1 z 1 + 1 z 2 = 1 ⇔ z 1 + z 2 2 = z 1 z 2 ⇔ b 2 = a c
Đáp án B
21. Phân tích A thành \(A=\left(a-b\right)\left(a-c\right)\left(b-c\right)\left(a^2+b^2+c^2+ab+bc+ac\right)\). Từ đó dễ dàng chứng minh.
23. \(9y\left(y-x\right)=4x^2\Leftrightarrow9y^2-9xy=4x^2\Leftrightarrow4x^2+9xy-9y^2=0\)
Chia cả hai vế của đẳng thức trên với \(y^2>0\)được :
\(4\left(\frac{x}{y}\right)^2+\frac{9x}{y}-9=0\). Đặt \(t=\frac{x}{y},t>0\)(Vì x,y dương)
\(\Rightarrow4^2+9t-9=0\Leftrightarrow\orbr{\begin{cases}t=\frac{3}{4}\left(\text{nhận}\right)\\t=-3\left(\text{loại}\right)\end{cases}}\)
Vậy \(\frac{x}{y}=\frac{3}{4}\Rightarrow y=\frac{4x}{3}\)thay vào biểu thức được :
\(\frac{x-y}{x+y}=\frac{x-\left(\frac{4x}{3}\right)}{x+\left(\frac{4x}{3}\right)}=-\frac{1}{7}\)
Vì B nằm giữa A và C nên A B → = k A C → cùng hướng và AB < AC nên 0 < k < 1.
Chọn C.