K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

Số cách chọn 9 viên tùy ý là C 18 9 .

Những trường hợp không có đủ ba viên bi khác màu là:

* Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng là 8.

* Không có bi xanh: Có C 13 9  cách.

* Không có bi vàng: Có C 15 9  cách.

Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì C 10 9  cách chọn 9 viên bi đỏ được tính hai lần.

Vậy số cách chọn 9 viên bi có đủ cả ba màu là:

C 10 9 + C 18 9 - C 13 9 - C 15 9 = 42910

Đáp án D

10 tháng 7 2021

 

a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách

Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách

Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách

\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.

b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)

Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)

\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.

19 tháng 2 2023

1. Nguyên tử gồm 2 phần: lớp vỏ và hạt nhân

2.

- Nguyên tử carbon có 6 electron.

- Lớp thứ nhất chứa tối đa 2 electron và bị hạt nhân hút mạnh nhất

- Lớp thứ 2 chứa tối đa 8 electron

8 tháng 8 2016

a, 23 viên

9 tháng 11 2017

10 nha, 23 là sai đó

NV
21 tháng 12 2022

a.

Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi

b.

Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ

Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách

c.

Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh

Số cách lấy là:

\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách

Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?

27 tháng 12 2021

TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.

\(\Rightarrow\) Có \(C^4_7\) cách chọn.

TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.

\(\Rightarrow\) Có \(C^4_8\) cách chọn.

TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.

\(\Rightarrow\) Có \(C^4_9\) cách chọn.

TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.

\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.

a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)

b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)

c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)

 

14 tháng 3 2018

Đáp án D

Có 3 ! 3 ! 4 ! 5 ! = 103680 cách.

12 tháng 2 2019

Đáp án D

Có 3!(3!4!5!) = 103680 cách.