Có 10 viên bi đỏ có bán kính khác nhau, 5 viên bi xanh có bán kính khác nhau và 3 viên bi vàng có bán kính khác nhau. Hỏi có bao nhiêu cách chọn ra 9 viên bi có đủ ba màu.
A. 42913.
B. 42912
C. 429000
D. 42910.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\) cách
Số cách chọn 6 viên chỉ màu vàng là \(C_8^6=28\) cách
Số cách chọn 6 viên chỉ màu xanh là \(C_{10}^6=210\) cách
\(\Rightarrow\) có \(100947-28-210=100709\) cách thỏa mãn.
b, Số cách chọn 6 viên có đủ 3 màu là \(5.8.10=400\)
Số cách chọn 6 viên bất kì là \(C_{23}^6=100947\)
\(\Rightarrow\) có \(100947-400=100547\) cách thỏa mãn.
1. Nguyên tử gồm 2 phần: lớp vỏ và hạt nhân
2.
- Nguyên tử carbon có 6 electron.
- Lớp thứ nhất chứa tối đa 2 electron và bị hạt nhân hút mạnh nhất
- Lớp thứ 2 chứa tối đa 8 electron
a.
Có \(C_{17}^5\) cách lấy 5 viên bi tùy ý từ 17 viên bi
b.
Lấy 1 bi trắng từ 7 bi trắng, 2 bi xanh từ 4 bi xanh và 2 bi đỏ từ 6 bi đỏ
Số cách lấy là: \(C_7^1.C_4^2.C_6^2\) cách
c.
Các trường hợp thỏa mãn: 1 trắng 1 đỏ 3 xanh, 1 trắng 2 đỏ 2 xanh, 1 trắng 3 đỏ 1 xanh, 2 trắng 1 đỏ 2 xanh, 2 trắng 2 đỏ 1 xanh
Số cách lấy là:
\(C_7^1C_6^1C_4^3+C_7^1C_6^2C_4^2+C_7^1C_6^3C_4^1+C_7^2C_6^1C_4^2+C_7^2C_6^2C_4^1\) cách
Thầy có thể giải thích cụ thể hơn về câu a được không thưa thầy?
TH1: 4 viên được lấy chỉ gồm 2 màu đỏ và trắng.
\(\Rightarrow\) Có \(C^4_7\) cách chọn.
TH2: 4 viên được lấy chỉ gồm 2 màu đỏ và vàng.
\(\Rightarrow\) Có \(C^4_8\) cách chọn.
TH3: 4 viên được lấy chỉ gồm 2 màu trắng và vàng.
\(\Rightarrow\) Có \(C^4_9\) cách chọn.
TH2 và TH3 đã bao gồm TH lấy 4 viên chỉ có màu trắng và 4 viên chỉ có màu vàng.
\(\Rightarrow\) Có \(C^4_7+C^4_8+C^4_9-C^4_4-C^4_5=225\) cách chọn ra 4 viên bi không đủ ba màu.
a: Số cách chọn là \(C^6_{16}=8008\left(cách\right)\)
b: Số cách chọn là \(C^2_4\cdot C^4_{12}=2970\left(cách\right)\)
c: SỐ cách chọn là \(C^6_9+C^6_{12}+C^6_{11}=1470\left(cách\right)\)
Số cách chọn 9 viên tùy ý là C 18 9 .
Những trường hợp không có đủ ba viên bi khác màu là:
* Không có bi đỏ: Khả năng này không xảy ra vì tổng các viên bi xanh và vàng là 8.
* Không có bi xanh: Có C 13 9 cách.
* Không có bi vàng: Có C 15 9 cách.
Mặt khác trong các cách chọn không có bi xanh, không có bi vàng thì C 10 9 cách chọn 9 viên bi đỏ được tính hai lần.
Vậy số cách chọn 9 viên bi có đủ cả ba màu là:
C 10 9 + C 18 9 - C 13 9 - C 15 9 = 42910
Đáp án D