K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Chọn D.

Giả sử phương trình có ba nghiệm phân biệt lập thành CSN,khi đó :

Thay vào phương trình ta có: m = -1; m = 3; m = -4.

Bằng cách thay từng giá trị của m vào phương trình ta thấy không có giá trị nào của m thỏa yêu cầu bài toán.

10 tháng 7 2018

Đáp án A

Điều kiện cần: Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng, khi đó

18 tháng 7 2019

Chọn A.

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x1; x2; x3 lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có x1.x2.x3 = 64

Theo tính chất của cấp số nhân, ta có x1x3 = x22. Suy ra ta có x23 = 64 x2 = 4

Thay x = 4 vào phương trình đã cho ta được: 43 – 7m.42 + 2(m2 + 6m).4 – 64 = 0

⇔ m2 – 8m = 0

+ Điều kiện đủ: Với m = 0  thay vào phương  trình đã cho ta được: x3 – 64 = 0 hay x = 4

(nghiệm kép-loại)

Với m = 8 thay vào phương trình đã cho nên ta có phương trình x3 – 56x2 + 224x – 64 = 0   

Giải phương trình này, ta được 3  nghiệm phân biệt lập thành cấp số nhân.

Vậy m = 8 là giá trị cần tìm.

20 tháng 12 2018

Đáp án D

· Điều kiện cần:

Giả sử phương trình đã cho có 3 nghiệm phân biệt x 1 ; x 2 ; x 3  lập thành một cấp số cộng

 Khi đó: x 1 + x 3 = 2 x 2 x 1 + x 2 + x 3 = 3 ⇔ 3 x 2 = 3 ⇔ x 2 = 1 .  

 Với x 2 = 1  thay vào phương trình ta được:

    1 − 3 + m + 2 − m = 0 (luôn đúng).

Phương trình đã cho có 3 nghiệm phân biệt tương đương với phương trình (*) có 2 nghiệm phân biệt khác 1.

29 tháng 1 2018

Chọn B.

Điều cần cần:

Giả sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.

Khi đó: x 1 + x 3 = 2 x 2 ,

Lại có : 

x 1 + x 2 + x 3 = − b a = 3 ⇒ x 2 = 1

Thay vào phương trình ta được: 13 – 3.12 – 9.1 + m =0

⇔ m = 11

* Điều kiện đủ : Với m =11 phương trình trở thành :

x 3 − 3 x 2 − 9 x + 11 = 0

⇔ x − 1 x 2 − 2 x − 11 = 0 ⇔ x 1 = 1 − 12 , x 2 = 1, x 3 = 1 + 12

Ba nghiệm này lập thành cấp số cộng.

Vậy m =11 là giá trị cần tìm.

21 tháng 7 2018

Chọn D

+ Điều kiện cần: Giả sử phương trình đã cho có ba nghiệm phân biệt x 1 , x 2 , x 3  lập thành một cấp số nhân.

Theo định lý Vi-ét, ta có  x 1 . x 2 . x 3 = 8

Theo tính chất của cấp số nhân, ta có x 1 x 3 = x 2 2 . Suy ra ta có  x 2 3 = 8 ⇔ x 2 = 2.

Với nghiệm x=2, ta có m 2 + 6 m − 7 = 0 ⇔ m = 1 m = − 7  

+ Điều kiện đủ: Với m= 1 hoặc m = -7 thì m 2 + 6 m = 7  nên ta có phương trình:  x 3 − 7 x 2 + 14 x − 8 = 0.

Giải phương trình này, ta được các nghiệm là 1,2,4 Hiển nhiên ba nghiệm này lập thành một cấp số nhân với công bôị q=2

Vậy m= 1 và m=  -7  là các giá trị cần tìm.

26 tháng 2 2019

Chọn B.

Giải sử phương trình có ba nghiệm phân biệt lập thành cấp số cộng.

Khi đó: x1 + x3 = 2x2, x1 + x2 + x3 = 3 x2 = 1

Thay vào phương trình ta có  m = 11.

Với m = 11 ta có phương trình : x3 – 3x2 – 9x + 11 = 0

(x – 1)(x2 – 2x – 11) = 0 ⇔ 

Ba nghiệm này lập thành CSC.

Vậy m = 11 là giá trị cần tìm.

19 tháng 2 2018

7 tháng 1 2019

Chọn B.

Xét hàm số f(x) = x 3 - 3 x 2 + x - m , 

Điểm uốn của đồ thị hàm số là A (1;-1-m).

Phương trình  x 3 - 3 x 2 + x - m   =   0  có ba nghiệm phân biệt lập thành một cấp số cộng.