Giá trị m để phương trình m x 2 - 2 ( m + 1 ) x + ( m - 1 ) = 0 có hai nghiệm trái dấu là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m+1\right)^2-4m=m^2+2m+1-4m=m^2-2m+1=\left(m-1\right)^2\\\)
\(\Delta\ge0\Leftrightarrow\left(m-1\right)^2\ge0\forall m\)
Theo hệ thức Vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m\end{matrix}\right.\)
để phương trình có hai nghiệm trái dấu \(\left\{{}\begin{matrix}\Delta\ge0\\x_1x_2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\forall m\\m< 0\end{matrix}\right.\)
Để phương trình (1) có hai nghiệm trái dấu thì \(1\left(m^2+2m\right)< 0\)
\(\Leftrightarrow m^2+2m< 0\)
\(\Leftrightarrow m^2+2m+1< 1\)
\(\Leftrightarrow\left(m+1\right)^2< 1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+1>-1\\m+1< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-2\\m< 0\end{matrix}\right.\Leftrightarrow-2< m< 0\)
Phương trình x 2 – 2(m – 1)x – m + 2 = 0 (a = 1; b = −2(m – 1); c = −m + 2)
Nên phương trình có hai nghiệm trái dấu khi ac < 0 ⇔ 1.(−m + 2) < 0
⇔ m > 2
Vậy m > 2 là giá trị cần tìm
Đáp án: B
Ta có \(ac=-m^2-2< 0\) ; \(\forall m\) nên pt đã cho luôn có 2 nghiệm trái dấu
Mà \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
\(\Rightarrow2\left|x_1\right|-\left|x_2\right|=4\Leftrightarrow-2x_1-x_2=4\)
Kết hợp với hệ thức Viet: \(x_1+x_2=-m+1\)
\(\Rightarrow\left\{{}\begin{matrix}-2x_1-x_2=4\\x_1+x_2=-m+1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-x_1=-m+5\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1=m-5\\x_2=-2m+6\end{matrix}\right.\)
Thay vào \(x_1x_2=-m^2-2\)
\(\Rightarrow\left(m-5\right)\left(-2m+6\right)=-m^2-2\)
\(\Leftrightarrow m^2-16m+28=0\Rightarrow\left[{}\begin{matrix}m=2\\m=14\end{matrix}\right.\)
a/
ta có : Δ = [-(m - 2) ]2 - 4 . 1 . (m - 5)
= m2 - 2m + 4 - 4m + 20
= m2 - 6m + 24
để pt có nghiệm thì : Δ ≥ 0
⇔ m2 - 6m + 24 ≥ 0
⇔ m2 - 2 . 3 . m + 32 + 15 ≥ 0
⇔ ( m - 3 )2 +15 ≥ 0
ta thấy : ( m - 3 )2 ≥ 0 ==> ( m - 3 )2 + 15 ≥ 15 > 0
Vậy pt trên luôn có nghiệm với mọi m
b/
:v
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
a: Khi m=1 thì pt sẽ là: x^2+4x-3=0
=>x=-2+căn 7 hoặc x=-2-căn 7
b: Δ=(2m-6)^2-4(m-4)
=4m^2-24m+36-4m+16
=4m^2-28m+52=(2m-7)^2+3>0
=>PT luôn có hai nghiệm pb
c: PT có hai nghiệm trái dấu
=>m-4<0
=>m<4
Đáp án: A