4. Nêu cách tìm hai số, biết tổng S và tích P của chúng.
Tìm hai số u và v trong mỗi trường hợp sau:
a ) u + v = 3 u v = − 8 b ) u + v = − 5 u v = 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nên không tồn tại cặp số u,v nào tồn tại thỏa mãn điều kiện trên.
a) S = 12, P = 28 ⇒ S 2 – 4 P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x 2 – 12 x + 28 = 0 .
Có a = 1; b = -12; c = 28 ⇒ Δ ’ = ( - 6 ) 2 – 28 = 8 > 0
Phương trình có hai nghiệm x 1 = 6 + 2 √ 2 ; x 2 = 6 - 2 √ 2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2
b) S = 3; P = 6 ⇒ S 2 – 4 P = - 15 < 0
Vậy không tồn tại u, v thỏa mãn yêu cầu.
S = -8; P = -105 ⇒ S2 – 4P = (-8)2 – 4.(-105) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x2 + 8x – 105 = 0
Ta có: Δ’ = 42 – 1.(-105) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
a) S = 32 ; P = 231 ⇒ S 2 – 4 P = 322 – 4 . 231 = 100 > 0
⇒ Tồn tại u và v là hai nghiệm của phương trình: x 2 – 32 x + 231 = 0 .
Ta có: Δ = ( - 32 ) 2 – 4 . 231 = 100 > 0
⇒ PT có hai nghiệm:
Vậy u = 21 ; v = 11 hoặc u = 11 ; v = 21.
b) S = -8; P = -105 ⇒ S 2 – 4 P = ( - 8 ) 2 – 4 . ( - 105 ) = 484 > 0
⇒ u và v là hai nghiệm của phương trình: x 2 + 8 x – 105 = 0
Ta có: Δ ’ = 4 2 – 1 . ( - 105 ) = 121 > 0
Phương trình có hai nghiệm:
Vậy u = 7 ; v = -15 hoặc u = -15 ; v = 7.
c) S = 2 ; P = 9 ⇒ S 2 – 4 P = 2 2 – 4 . 9 = - 32 < 0
⇒ Không tồn tại u và v thỏa mãn.
H = 32; U = 231 => H^2 - 4U = 32^2 - 4.231 = 100 > 0
tồn tại u và v là 2 nghiệm pt: x^2 - 32x + 231 = 0
ta có: \(\Delta=\left(-32x\right)^2-4.231=100>0\)
pt có 2 nghiệm:
\(x_1=\frac{32+100}{2.1}=21;x_2=\frac{32-\sqrt{100}}{2.1}=11\)
\(\Rightarrow\hept{\begin{cases}u=21;v=11\\u=11;v=21\end{cases}}\)
Hai số u và v với u +v =4 và uv =19 nên nó là nghiệm của phương trình x 2 - 4x +19 = 0
∆ ’= - 2 2 – 1.19= 4 - 19=-15 < 0
Phương trình vô nghiệm nên không có giá trị nào của u và v thỏa mãn điều kiện bài toán
S = 3; P = 6 ⇒ S2 – 4P = -15 < 0
Vậy không tồn tại u, v thỏa mãn yêu cầu.
S = 12, P = 28 ⇒ S2 – 4P = 32 > 0
⇒ u, v là hai nghiệm của phương trình: x2 – 12x + 28 = 0.
Có a = 1; b = -12; c = 28 ⇒ Δ’ = (-6)2 – 28 = 8 > 0
Phương trình có hai nghiệm x1 = 6 + 2√2; x2 = 6 - 2√2
Vì u > v nên u = 6 + 2√2 và v = 6 - 2√2