So sánh:
a, (- 256) + 15 và - 256
b, 174 + (- 6) và 174
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
\(\dfrac{11}{-13}=-\dfrac{11}{13}=-\dfrac{13}{13}+\dfrac{2}{13}=-1+\dfrac{2}{13}\\ -\dfrac{14}{15}=-\dfrac{15}{15}+\dfrac{1}{15}=-1+\dfrac{1}{15}\)
Ta thấy : \(\dfrac{1}{15}< \dfrac{1}{13}< \dfrac{2}{13}=>-1+\dfrac{1}{15}< -1+\dfrac{2}{13}\)
hay \(\dfrac{11}{-13}>-\dfrac{14}{15}\)
1: Ta có: \(2155-\left(174+2155\right)+\left(-68+174\right)\)
\(=2155-174-2155-68+174\)
=-68
2) Ta có: \(-25\cdot72+25\cdot21-49\cdot25\)
\(=-25\cdot\left(72-21+49\right)\)
\(=-25\cdot100=-2500\)
a) \(64^x:16^x=256\)
\(\Rightarrow\left(2^6\right)^x:\left(2^4\right)^x=2^8\)
\(\Rightarrow2^{6x}:2^{4x}=2^8\)
\(\Rightarrow2^{6x-4x}=2^8\)
\(\Rightarrow2^{2x}=2^8\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
b) \(\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow\dfrac{-7^4}{7^x}=-7\)
\(\Rightarrow-7^{4-x}=-7\)
\(\Rightarrow7^{4-x}=7\)
\(\Rightarrow4-x=1\)
\(\Rightarrow x=4-1\)
\(\Rightarrow x=3\)
c) \(\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=\dfrac{64}{-256}\)
\(\Rightarrow\left(-4\right)^x=-4\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^1\)
\(\Rightarrow x=1\)
\(a) 64^x:16^x=256\\\Rightarrow (64:16)^x=256\\\Rightarrow 4^x=4^4\\\Rightarrow x=4\\---\)
\(b,\dfrac{-2401}{7^x}=-7\)
\(\Rightarrow7^x=-2401:\left(-7\right)\)
\(\Rightarrow7^x=343\)
\(\Rightarrow7^x=7^3\)
\(\Rightarrow x=3\)
\(c,\dfrac{64}{\left(-4\right)^x}=-256\)
\(\Rightarrow\left(-4\right)^x=64:\left(-256\right)\)
\(\Rightarrow\left(-4\right)^x=-\dfrac{1}{4}\)
\(\Rightarrow\left(-4\right)^x=\left(-4\right)^{-1}\)
\(\Rightarrow x=-1\)
#\(Toru\)
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
a)
\(\begin{array}{l}{( - 3)^2}.{( - 3)^4} = 9.81 = 729\\ {( - 3)^6} = ( - 3).( - 3).( - 3).( - 3).( - 3).( - 3)\\ = 9.9.9 = 729\end{array}\)
Vậy \({( - 3)^2}.{( - 3)^4}\) = \({( - 3)^{6}}\)
b)
\(\begin{array}{l}0,6{}^3:0,{6^2} = 0,216:0,36 = 0,6\end{array}\)
Vậy \(0,6{}^3:0,{6^2}\) = \(0,{6}\)
\(b,\left(\sqrt{27}\right)^2=27>25=5^2\Rightarrow\sqrt{27}>5\\ c,6^2=36< 41=\left(\sqrt{41}\right)^2\Rightarrow6< \sqrt{41}\\ d,\left(\sqrt{79}\right)^2=79< 81=9^2\Rightarrow\sqrt{79}< 9\\ e,7^2=49>47=\left(\sqrt{47}\right)^2\Rightarrow7>\sqrt{47}\\ f,\left(\sqrt{123}\right)^2=123>100=10^2\Rightarrow\sqrt{123}>10\)
a: 21^15=3^15*7^15
27^5*49^8=3^15*7^14
mà 15>14
nên 21^15>27^5*49^8
b: \(2020^{2020}-2020^{2019}=2020^{2019}\left(2020-1\right)=2020^{2019}\cdot2019\)
\(2020^{2019}-2020^{2018}=2020^{2018}\cdot2019\)
mà 2019>2018
nên 2020^2020-2020^2019>2020^2019-2020^2018
a) >
b) <
Tick nha