Cho đường tròn (O) đường kính AB, vẽ góc ở tâm A O C ^ = 50 0 với C nằm trên (O). Vẽ dây CD vuông góc với AB và dây DE song song với AB
a, Tính số đo cung nhỏ BE
b, Tính số đo cung CBE. Từ đó suy ra ba điểm C, O, E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB//DE(gt)
CD⊥AB(gt)
Do đó: DE⊥CD(Định lí 2 từ vuông góc tới song song)
⇔\(\widehat{CDE}=90^0\)
Xét ΔCDE có \(\widehat{CDE}=90^0\)(cmt)
nên ΔCDE vuông tại D(Định nghĩa tam giác vuông)
⇔D nằm trên đường tròn đường kính CE
⇔C,D,E nằm trên đường tròn đường kính CE
mà C,D,E cùng nằm trên (O)(gt)
nên CE là đường kính của (O)
hay C,O,E thẳng hàng(đpcm)
Ta chứng minh A D ^ = B E ^ , mà CD ⊥ AB nên từ đó suy ra
* Cách khác:Chứng minh A O C ^ = B O E ^ => ĐPCM
a, Tính được sđ B E ⏜ = 50 0
b, Chứng minh được sđ C B E ⏜ = 180 0
=> C, O, E thẳng hàng (ĐPCM)