Hai lớp 7A và 7B trồng được 90 cây xanh. Biết số cây xanh trồng được của lớp 7A, 7B lần lượt tỉ lệ với các số 7 và 8. Số cây xanh của mỗi lớp 7A, 7B trồng được lần lượt là bao nhieu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cây trồng được của lớp 7A,7B,7C là a,b,c(cây)(a,b,c∈N*)
Áp dụng t/c dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)
\(\Rightarrow\left\{{}\begin{matrix}a=12.4=48\\b=12.6=72\\c=12.3=36\end{matrix}\right.\)
Vậy....
Gọi số cây lớp 7A, 7B, 7C lần lượt là a,b,c(a,b,c>0)
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}\\a+c-b=12\end{matrix}\right.\)
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)
\(\dfrac{a}{4}=12\Rightarrow a=48\\ \dfrac{b}{6}=12\Rightarrow b=72\\ \dfrac{c}{3}=12\Rightarrow c=36\)
Gọi số cây xanh của 3 lớp lần lượt là : a,b,c
Ta có: \(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3};a+c-b=12\)
Áp dụng tính chất dtsbn , ta có:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a+c-b}{4+3-6}=\dfrac{12}{1}=12\)
\(\Rightarrow\left\{{}\begin{matrix}a=48\\b=72\\c=36\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}7A:...\\7B:...\\7C:...\end{matrix}\right.\)
Gọi số cây lớp 7A,7B,7C ll là a,b,c(cây;a,b,c>0)
Áp dụng t.c dtsbn:
\(\dfrac{a}{4}=\dfrac{b}{6}=\dfrac{c}{3}=\dfrac{a-b+c}{4-6+3}=\dfrac{12}{1}=12\\ \Leftrightarrow\left\{{}\begin{matrix}a=48\\b=72\\c=36\end{matrix}\right.\)
Vậy ..
Gọi số cây mà `3` lớp trồng được lần lượt là `x,y,z (x,y,z \in \text {N*})`
Vì số cây của `3` lớp lần lượt tỉ lệ với `3:4:5`
Nghĩa là: `x/3=y/4=z/5`
Số cây trồng được của lớp `7A, 7B` nhiều hơn lớp `7C` là `40` cây
`-> x+y-z=40`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/3=y/4=z/5=(x+y-z)/(3+4-5)=40/2=20`
`-> x/3=y/4=z/5=20`
`-> x=20*3=60, y=20*4=80, z=20*5=100`
Vậy, số cây của `3` lớp lần lượt là `60` cây, `80` cây, `100` cây.
Gọi số cây trồng được của 3 lớp 7A,7B,7C lần lượt là \(x,y,z\)(cây) \((x,y,z \in N*)\)
Do số cây trồng được của 3 lớp 7A,7B,7C lần lượt tỉ lệ với 3,4,5 nên:\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Do số cây trồng được của 2 lớp 7A,7B nhiều hơn số cây trồng được của lớp 7C là 40 cây nên \(x+y-z=40\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{x+y-z}{3+4-5}=\dfrac{40}{2}=20\)
Do đó:
\(\dfrac{x}{30}=20\Rightarrow x=60\)
\(\dfrac{y}{4}=20\Rightarrow y=80\) \(\left(TM\right)\)
\(\dfrac{z}{5}=20\Rightarrow z=100\)
Gọi số cây xạnh hai lớp 7A, 7B phải trồng và chăm sóc lần lượt là \(a,b\)(cây) \(a,b\inℕ^∗\).
Vì tổng số cây phải trồng và chăm sóc là \(40\)cây nên \(a+b=40\).
Vì số cây xạnh hai lớp 7A và 7B trồng lần lượt tỉ lệ với \(3\)và \(5\)nên \(\frac{a}{3}=\frac{b}{5}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{3}=\frac{b}{5}=\frac{a+b}{3+5}=\frac{40}{8}=5\)
\(\Leftrightarrow\hept{\begin{cases}a=3.5=15\\b=5.5=25\end{cases}}\)
\(\text{Gọi số cây lớp 7A; 7B; 7C trồng đc lần lượt là x; y; z}\)\(\text{Theo đề bài, ta có: }\)
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}\)
\(\text{Áp dụng tính chất của hai dãy tỷ số bằng nhau, ta có:}\)
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{3}=\dfrac{\left(x+z\right)-y}{\left(4+3\right)-6}=\dfrac{12}{1}=12\)
\(\left\{{}\begin{matrix}\dfrac{x}{4}=12;x=12.4=48\\\dfrac{y}{6}=12;y=12.6=72\\\dfrac{z}{3}=12;z=12.3=36\end{matrix}\right.\)
\(\text{Vậy số cây của 3 lớp 7A; 7B; 7C trồng đc lần lượt là 48; 72; 36}\)
\(\text{Nếu thấy hay thì cho xin cái li.ke nha bn ôi}\)
Lời giải:
Gọi số cây xanh của 3 lớp lần lượt là $a,b,c$.
Theo bài ra ta có: $a+b+c=81$
$\frac{a}{9}=\frac{b}{8}=\frac{c}{10}$
Áp dụng TCDTSBN thì:
$\frac{a}{9}=\frac{b}{8}=\frac{c}{10}=\frac{a+b+c}{9+8+10}=\frac{81}{27}=3$
$\Rightarrow b=8.3=24$
Vậy lớp 7B trồng được 24 cây xanh.
Gọi số cây xanh lớp 7A,7B trông được lần lượt là a,b(cây)(a,b∈N*,a,b<90)
Áp dụng t/c dtsbn:
\(\dfrac{a}{7}=\dfrac{b}{8}=\dfrac{a+b}{7+8}=\dfrac{90}{15}=6\)
\(\Rightarrow\left\{{}\begin{matrix}a=7.6=56\\b=6.8=48\end{matrix}\right.\)