Cho đoạn thẳng AB. Vẽ cung tròn tâm A bán kính AB và cung tròn tâm B bán kính BA, chúng cắt nhau ở C và D. Chứng minh rằng: ΔABC= ΔABD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔACD và ΔBCD, ta có:
AC = BC (= AB)
CD cạnh chung
AD = BD (= AB)
Suy ra: ΔACD = ΔBCD(c.c.c)
Bạn chỉ cần viết lại khúc từ cung tròn tâm A đến ở C và D rồi suy ra AC=AB=AD=BD=BC là đc nhé còn lại tự giải
a: xét tam giác abc và tam giác abd có
- ab chung
- ac=ad
- cd=bd
suy ra tam gics abc= tam giác abd (c-c-c)
b:xét tam giác acd và tam giác bcd có
-cd chung
- ac=ad
- cb=bd
suy ra tam giác acd= tam giác bcd (c-c-c)
a: Xét ΔABC và ΔABD có
AB chung
BC=BD
AC=AD
Do đó: ΔABC=ΔABD
b: Xét ΔACD và ΔBCD có
AC=BC
CD chung
AD=BD
Do đó:ΔACD=ΔBCD
Hướng dẫn:
Có: BM = BN ( = BA ) => B thuộc đường trung trực của MN (1)
Có: AM= AN (= AB ) => A thuộc đường trung trực của MN (2)
Từ (1) , (2) => AB là đường trung trực MN => AB vuông góc MN.
Xét ΔABC và ΔABD, ta có:
AC = AD (bằng bán kính đường tròn (A))
Ab cạnh chung
BC = BD (bằng bán kính đường tròn (B))
Suy ra: ΔABC = ΔABD (c.c.c)