cho tam giac ABC can tai A, goc A =108 do .goi O la 1 diem nam tren tia phan giac cua goc C sao cho CBO=12 do , ve tam giac deu BOM(M va A cung thuoc 1 nua mat phang bo BO. cmr : a)ba diem C,A,M thang hang b) tam giac AOB can
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có\(\widehat{OAt}+\widehat{tAx}=\widehat{OAx}\)
thay\(80^o+\widehat{tAx}=180^o\)
\(\widehat{tAx}=180^o-80^o=100^o\)
vid tia At' là tia phân giác của tAx
\(\Rightarrow\widehat{tAt'}=\widehat{t'Ax}=\frac{\widehat{xAt}}{2}=\frac{100^o}{2}=50^o\)
\(\Rightarrow\widehat{xAt'}=\widehat{xOy}=50^o\)
hai góc \(\widehat{xAt'}\)và\(\widehat{xOy}\)ở vị trí đồng vị bằng nhau
\(\Rightarrow Oy//At'\)
b)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!