K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Vậy đường tiệm cận ngang của đồ thị hàm số là đường thẳng y=0

16 tháng 11 2018

23 tháng 1 2018

Chọn B.

Ta có TCĐ x=2 và TCN y=1.

30 tháng 1 2017

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

23 tháng 11 2019

Đáp án: A.

Nhận xét rằng hàm số dạng Giải sách bài tập Toán 12 | Giải sbt Toán 12 (a, b ≠ 0) có tiệm cận đứng là Giải sách bài tập Toán 12 | Giải sbt Toán 12 và tiệm cận ngang là y = 0.

19 tháng 5 2019

Chọn C

Dựa vào định nghĩa mệnh đề 1 sai và mệnh đề 2, 3, 4 đúng.

17 tháng 1 2019

Đáp án D

Đồ thị hàm số  y = 1 2 x - 3  có hai đường tiệm cận đứng và một đường tiệm cận ngang

Đồ thị hàm số  y = x + x 2 + x + 1 x   có 1 tiệm cận đứng là x = 0 

Mặt khác  lim x → + ∞ y = x + x 2 + x + 1 x = lim x → + ∞ x + x + 1 x + 1 x 2 x = 0  nên đồ thị hàm số có 2 tiệm cận ngang

Xét hàm số  y = x - 2 x - 1 x 2 - 1 = x - 2 x - 1 x + 2 x - 1 x 2 - 1 = x - 1 x + 2 x - 1 x - 1 x > 1 2  suy ra đồ thị không có tiệm cận đứng. Do đó có 1 mệnh đề đúng

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m+3\right)x-5}{x+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m+3\right)x-5}{x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{2m+3-\dfrac{5}{x}}{1+\dfrac{1}{x}}=2m+3\)

=>Đường thẳng y=2m+3 là đường tiệm  cận ngang duy nhất của đồ thị hàm số \(y=\dfrac{\left(2m+3\right)x-5}{x+1}\)

Để đường thẳng y=2m+3 đi qua A(-1;3) thì 2m+3=3

=>2m=0

=>m=0

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m^2-3m-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=m^2-3m\)

=>Đường thẳng \(y=m^2-3m\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m^2-3m\right)x^2-1}{x^2+1}\)

=>\(m^2-3m=-2\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>m=1 hoặc m=2

13 tháng 7

Đúng 

a: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(m-5\right)-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(m-5\right)x-1}{2x+1}=\lim\limits_{x\rightarrow-\infty}\dfrac{m-5-\dfrac{1}{x}}{2+\dfrac{1}{x}}=\dfrac{m-5}{2}\)

=>Đường thẳng \(y=\dfrac{m-5}{2}\) là tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(m-5\right)x-1}{2x+1}\)

Để đường tiệm cận ngang \(y=\dfrac{m-5}{2}\) đi qua M(-2;1) thì \(\dfrac{m-5}{2}=1\)

=>m-5=2

=>m=7

b: \(\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

\(\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

\(=\lim\limits_{x\rightarrow-\infty}\dfrac{\left(2m-1\right)+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{1}{x^2}}=2m-1\)

=>\(y=2m-1\) là đường tiệm cận ngang của đồ thị hàm số \(y=\dfrac{\left(2m-1\right)x^2+x-1}{x^2+1}\)

=>2m-1=1

=>2m=2

=>m=1

20 tháng 10 2019

Đáp án D

NV
8 tháng 8 2020

1.

\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang

2.

\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng

3.

\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang

4.

\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng

ĐTHS có 2 tiệm cận