Cho đồ thị hàm số y = 3 x 2 . Tìm tung độ của điểm thuộc parabol có hoành độ là số nguyên dương nhỏ nhất?
A. 0
B. 1
C. -3
D. 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xác định hệ số a, biết rằng đồ thị của hàm số y=ax đi qua điểm A(6;2).Điểm B(-9;3), điểm C(7;-2) có thuộc đồ thị hàm số không ? Tìm trên đồ thị của hàm số điểm D có hoành độ bằng -4,điểm E có tung độ bằng 2
b: \(\left(5;-\dfrac{10}{3}\right);\left(\dfrac{3}{7};-\dfrac{2}{7}\right)\)
a. Để đồ thị qua A
\(\Rightarrow-1=-3m+m-1\)
\(\Leftrightarrow m=0\)
b. Để đồ thị cắt trục tung tại điểm có tung độ 2
\(\Rightarrow m-1=2\)
\(\Leftrightarrow m=3\)
c. Để đồ thị cắt trục hoành tại điểm có hoành độ 3
\(\Rightarrow0=3m+m-1\)
\(\Leftrightarrow m=\dfrac{1}{4}\)
\(1,\Leftrightarrow\left\{{}\begin{matrix}a=2\\b\ne3\end{matrix}\right.\Leftrightarrow y=2x+b\)
Mà đồ thị cắt Ox tại hoành độ \(-2\Leftrightarrow A\left(-2;0\right)\inđths\Leftrightarrow-4+b=0\Leftrightarrow b=4\)
Vậy đt cần tìm là \(y=2x+4\)
\(2,\text{Gọi }M\left(x_0;y_0\right)\text{ là điểm cần tìm}\\ \Leftrightarrow y_0=2x_0+3\\ \Leftrightarrow x_0+y_0=3x_0+3\\ \Leftrightarrow3x_0+3=2\\ \Leftrightarrow x_0=-\dfrac{1}{3}\Leftrightarrow y_0=\dfrac{7}{3}\\ \Leftrightarrow M\left(-\dfrac{1}{3};\dfrac{7}{3}\right)\)
Đáp án D
Số nguyên dương nhỏ nhất là 1.
Do đó, tung độ của điểm thuộc parabol có hoành độ 1 là: y = 3. 1 2 = 3