Gọi M , n lần lượt là giá trị cực đại, giá trị cực tiểu của hàm số y = x 2 + 3 x + 3 x + 2 . Khi đó giá trị của biểu thức M 2 - 2 n bằng
A. 8.
B. 7
C. 9
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
y ' = x 2 + 4 x + 3 x + 2 2 ⇒ y ' = 0 ⇔ x 2 + 4 x + 3 = 0 ⇔ x = − 1 ⇒ y c t = 1 = n x = − 3 ⇒ y c d = − 3 = M ⇒ M 2 − 2 n = 7
Đáp án C
Ta có y ' = 3 x 2 − 6 x = 0 ⇔ x = 0 ⇒ y = − 2 = a x = 2 ⇒ y = − 6 = b
Khi đó 2 a 2 + b = 2
Giá trị cực đại bằng y(-2)=3 giá trị cực tiểu bằng y(2)=0
Chọn đáp án D.
Ta có 64 = -8a + 4b - 2c + d; -61 = 27a + 9b + 3c +d
Từ y ' = 3 a x 2 + 2 b x + c ta thu được hai phương trình 0 = 12a - 4b + c; 0 = 27a + 6b + c
Giải hệ gồm 4 phương trình trên ta thu được a = 2; b = -3; c = -36; d = 20 hay a + b + c + d = -17
Đáp án C
Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)
\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)
Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :
\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)
Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)
\(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)
Đáp án A
Có 2 mệnh đề sai là mệnh đề (3) và mệnh đề (4).
Mệnh đề (3) sai vì nếu hai cực trị của hàm số cùng dấu thì đồ thị hàm số chỉ cắt trục Ox tại một điểm.
Mệnh đề (4) sai lý do tương tự mệnh đề (3).
Chọn B
Hàm số đạt cực đại tại x=-3 và y y C D = - 3
Hàm số đạt cực tiểu tại x=-1 và y C T = 1
⇒ M 2 - 2 n = 7
Phương pháp trắc nghiệm:
Bấm máy tính:
Bước 1
Bước 2: Giải phương trình bậc hai :
Bước 3: Nhập vào máy tính
Cacl x = A → C
Cacl x = B → D
Bước 4: Tính C 2 - 2 D = 7