Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, SA ⊥ (ABCD), SA=a 3 . Gọi M là trung điểm của SD. Tính khoảng cách giữa hai đường thẳng AB và CM.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là D
+ Gọi O là giao điểm của AC,BD
⇒ MO \\ SB ⇒ SB \\ ACM
⇒ d SB,ACM = d B,ACM = d D,ACM .
+ Gọi I là trung điểm của AD ,
M I \ \ S A ⇒ M I ⊥ A B C D d D , A C M = 2 d I , A C M .
+ Trong ABCD: IK ⊥ AC (với K ∈ AC ).
+ Trong MIK: IH ⊥ MK (với H ∈ MK ) (1) .
+ Ta có: AC ⊥ MI ,AC ⊥ IK ⇒ AC ⊥ MIK
⇒ AC ⊥ IH (2) .
Từ 1 và 2 suy ra
IH ⊥ ACM ⇒ d I ,ACM = IH .
+ Tính IH ?
- Trong tam giác vuông MIK. : I H = I M . I K I M 2 + I K 2 .
- Mặt khác: M I = S A 2 = a , I K = O D 2 = B D 4 = a 2 4
⇒ I H = a a 2 4 a 2 + a 2 8 = a 3
Vậy d S B , A C M = 2 a 3 .
Lời giải khác
\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)
\(\Rightarrow AB=a\)
Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)
\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)
Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)
Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)
Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)
\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)
\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)
Đáp án C
Gọi I;N lần lượt là trung điểm của AB và SC
Suy ra AMNI là hình bình hành ⇒ A M ∥ I N ⇒ A M ∥ S C I
Do đó d A M , S C = d A M , S C I = d A ; S C I = h
Kẻ A H ⊥ I C H ∈ I C , A K ⊥ S H K ∈ S H ⇒ A K ⊥ S C I
Ta có S Δ A C I = 1 2 S Δ A B C = 1 2 . A H . I C ⇒ A H = a 2 4 : a 5 4 = a 5 5
Tam giác SAH vuông tại A , có 1 A K 2 = 1 A H 2 + 1 S A 2 ⇒ A K = 2 a 21
Vậy khoảng cách cần tính là h = 2 a 21 21
Đáp án D
Dựng C E / / B M khi đó d B M ; S C = d B M ; S C E
Ta có A E M E = 3 2 ⇒ d M = 2 3 d A
Dựng A I ⊥ C E ; A F ⊥ S I ⇒ d A = A F
Trong đó S A = a , A I = A E sin E , với
sin E = C D C E = a a 2 + a 2 2 = 2 5 ⇒ A I = 3 a 2 . 2 5 = 3 a 5
Hoặc tính A I = 2 S A C D C D ⇒ d A = A I . S A A I 2 + S A 2 = 3 14 ⇒ d M = 2 14
Đáp án B