Cho hàm số f(x) liên tục tại x 0 . Đạo hàm của f(x) tại x 0 là:
A. f x 0
B. f x 0 + h - f x 0 h
C. lim h → 0 f x 0 + h - f x 0 h (nếu tồn tại giới hạn)
D. lim h → 0 f x 0 + h - f x 0 - h h (nếu tồn tại giới hạn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Dựa vào khái niệm cực trị và các kiến thức liên quan.
Cách giải:
(1) chỉ là điều kiện cần mà không là điều kiện đủ.
VD hàm số y = x3 có y' = 3x2 = 0 ⇔ x = 0. Tuy nhiên x = 0 không là điểm cực trị của hàm số.
(2) sai, khi f''(x0) = 0, ta không có kết luận về điểm x0 có là cực trị của hàm số hay không.
(3) hiển nhiên sai.
Vậy (1), (2), (3): sai; (4): đúng
Chọn B.
Ta có: ; f(0) = a + 2.
Vậy để hàm số liên tục tại x = 0 thì a + 2 = 1 ⇔ a = -1.
- Định nghĩa:
- Cho h = Δx, khi Δx → 0 thì h → 0 nên ta có:
Chọn C