Cho đường tron tâm O bấn kính R .Từ điểm M nằm ngoài đường tròn(O)kẻ 2 tiếp tuyến MA,MB cho đường tròn (A,B là tiếp điểm).Gọi H là giao điểmn của AB và OM a ,chứng minh HA=HB và MO⊥AB b,tính chu vi tam giác ABM ,khi OM=5cm và R=3cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
=>MO\(\perp\)BA tại C và C là trung điểm của AB
Xét ΔMAO vuông tại A có AC là đường cao
nên \(MC\cdot MO=MA^2\left(3\right)\)
Xét (O) có
ΔAQD nội tiếp
AD là đường kính
Do đó: ΔAQD vuông tại Q
=>QA\(\perp\)QD tại Q
=>AQ\(\perp\)DM tại Q
Xét ΔADM vuông tại A có AQ là đường cao
nên \(MQ\cdot MD=MA^2\left(4\right)\)
Từ (3) và (4) suy ra \(MC\cdot MO=MQ\cdot MD\)
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b; Xét (O) có
MA,MB là tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
hay MO⊥AB