Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 3a. Gọi φ là góc giữa cạnh bên và mặt phẳng đáy. Tính tan φ .
A. tan φ = 3 2
B. tan φ = 2 3
C. tan φ = 2 3 3
D. tan φ = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
Gọi M là trung điểm của BC, suy ra AM ⊥ BC.
Ta có
Do đó
Tam giác ABC đều cạnh a, suy ra trung tuyến AM = a 3 2
Tam giác vuông SAM, có
Gọi M là trung điểm BC, suy ra A M ⊥ B C
Tam giác ABC đều cạnh a suy ra trung tuyến
Tam giác vuông SAM có
Chọn D.
Đáp án A.
* Hướng dẫn giải:
Dễ thấy AB = BC và A B C ⏜ = 60 o nên tam giác ABC đều.
Gọi H là hình chiếu của A lên (ABCD).
Do SA = SB =SC nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Mặt khác, H O = 1 3 B O = 1 3 . a 3 2 = a 3 6
a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có
Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a
Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó
mà
nên
Đáp án A
Ta có: B là hình chiếu của B lên (ABCD)
A là hình chiếu của S lên (ABCD)
Suy ra góc tạo bởi (ABCD) là góc φ = S B A ^ .
Đáp án A
Gọi H là tâm của tam giác đều ABC => SH ⊥ (ABC)
(SA;(ABC))
Đáp án A
Gọi H là tâm của tam giác đều A B C ⇒ S H ⊥ A B C
S A ; A B C = S A ; H A = ∠ S A H = φ A H = 2 3 . a 3 2 = a 3 3 S H = A H . tan φ = a 3 3 tan φ V S . A B C = 1 3 . S H . S A B C = 1 3 . a 3 3 tan φ . a 2 3 4 = a 3 tan φ 12
Chọn C
Gọi H là trọng tâm của tam giác ABC, M là trung điểm của BC, khi đó S H ⊥ B C . Ta có