K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

Ta có  a 2 + 4 b 2 = 12 a b ⇔ a + 2 b 2 = 16 a b

Suy ra 

2 log 3 a + 2 b = log 3 2 4 + log 3 a + log 3 b ⇔ log 3 a + 2 b = 2 log 3 2 + 1 2 log 3 a + log 3 b

 Do đó cả hai mệnh đề đều sai

Đáp án C

\(P=loga^3+logb^2=log\left(a^3b^2\right)=log\left(100\right)=10\)

18 tháng 1 2018

AH
Akai Haruma
Giáo viên
26 tháng 11 2017

Lời giải:

Đặt \(\log_9a=\log_{12}b=\log_{16}(a+b)=t\)

\(\left\{\begin{matrix} a=9^t\\ b=12^t\\ a+b=16^t\end{matrix}\right.\Rightarrow 9^t+12^t=16^t\)

Chia 2 vế cho \(12^t\) ta có:

\(\left(\frac{9}{12}\right)^t+1=\left(\frac{16}{12}\right)^t\)

\(\Leftrightarrow \left(\frac{3}{4}\right)^t+1=\left(\frac{4}{3}\right)^t\) (1)

Đặt \(\frac{a}{b}=\left(\frac{9}{12}\right)^t=\left(\frac{3}{4}\right)^t=k\). Thay vào (1):

\(k+1=\frac{1}{k}\Leftrightarrow k^2+k-1=0\)

\(\Leftrightarrow \frac{a}{b}=k=\frac{-1+ \sqrt{5}}{2}\) (do \(k>0\) nên loại TH \(k=\frac{-1-\sqrt{5}}{2}\) )

Thấy \(\frac{-1+\sqrt{5}}{2}\in (0;\frac{2}{3})\) nên chọn đáp án b

14 tháng 12 2017

tks u verry much

\(log_a\left(a^3b^2\right)=log_aa^3+log_ab^2=3+2\cdot log_ab\)

=>B

D
datcoder
CTVVIP
15 tháng 8 2023

a) \(\log_a\left(a^2b\right)=\log_aa^2+\log_ab=2.\log_aa+\log_ab=2.1+2=4\)

b) \(\log_a\dfrac{a\sqrt{a}}{b\sqrt[3]{a}}=\log_a\left(a\sqrt{a}\right)-\log_a\left(b\sqrt[3]{b}\right)=\log_aa^{\dfrac{3}{2}}-\log_ab^{\dfrac{4}{3}}=\dfrac{3}{2}.\log_aa-\dfrac{4}{3}\log_ab=\dfrac{3}{2}.1-\dfrac{4}{3}.2=-\dfrac{7}{6}\)

c) \(\log_a\left(2b\right)+\log_a\left(\dfrac{b^2}{2}\right)=\log_a2+\log_ab+\log_ab^2-\log_a2=\log_ab+2\log_ab=3\log_ab=3.2=6\)

a: \(=log_aa^2+log_ab=2+2=4\)

b: \(log_a\left(\dfrac{a\sqrt{a}}{b\sqrt[3]{b}}\right)=log_aa^{\dfrac{3}{2}}-log_ab^{\dfrac{4}{3}}\)

=3/2-4/3*2

=3/2-8/3

=9/6-16/6=-7/6

c: \(log_a\left(2b\right)+log_a\left(\dfrac{b^2}{2}\right)\)

\(=log_a\left(2b\cdot\dfrac{b^2}{2}\right)=log_a\left(b^3\right)=3\cdot2=6\)

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

D
datcoder
CTVVIP
15 tháng 8 2023

a) \(\log_{12}12^3=3.\log_{12}12=3.1=3\)

b) \(\log_{0,5}0,25=\log_{2^{-1}}2^{-2}=\dfrac{-2}{-1}\log_22=2.1=2\)

c) \(\log_aa^{-3}=-3.\log_aa=-3.1=-3\)

a: \(log_{12}12^3=3\)

b: \(=log_{0.5}0.5^2=2\)

c: \(log_aa^{-3}=-3\)

15 tháng 8 2023

Hàm số \(y=log_cx\) nghịch biến

\(\Rightarrow0< c< 1\) và các hàm \(y=log_ax,y=log_bx\) đồng biến nên \(a,b>1\)

Ta chọn \(x=100\Rightarrow log_a>log_b100\Rightarrow a< b\Rightarrow b>a>c\)

\(\Rightarrow B\)

15 tháng 8 2023

B

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)