cho số tự nhiên a, b ,c neu a.b = 0 chứng minh a =0 hoặc b = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét a<b=>a+b<b+b=2b
Vì a>2=>ab>2b>a+b
=>a+b<ab
Xét b<a=>a+b<a+a=2a
Vì b>2=>ab>2a>a+b
=>a+b<ab
Vậy a+b<ab
Giả sử a<b.
=>a+b<b+b=2b
Vì a>2=>ab>2b>a+b
=>a+b<ab
Giả sử b<a.
=>a+b<a+a=2a
Vì b>2=>ab>2a>a+b
=>a+b<ab
Vậy a+b<ab
1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath
Lời giải:
Ta có:
\((ab+cd)^2=a^2b^2+c^2d^2+2abcd\)
\(=a^2b^2+c^2d^2-2abcd+4abcd\)
\(=(ab-cd)^2+4abcd\geq 4abcd=4\)
Vậy \((ab+cd)^2\geq 4\)
\(\Rightarrow ab+cd\geq \sqrt{4}=2\) (với \(ab+cd>0\))
Vậy......
a) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒a+b>0
nếu a>0, b=0 ⇒a+b>0
nếu a=0, b>0 ⇒a+b>0
nếu a=0, b=0 ⇒a+b=0
⇒ a+b=0 khi và chỉ khi a = b = 0
b) a và b là 2 số tự nhiên ⇒ a, b ≥ 0
nếu a>0, b>0 ⇒ ab>0
nếu a=0, b>0 ⇒ ab=0
nếu a>0, b=0 ⇒ ab=0
Vậy ab = 0 khi và chỉ khi a = 0 hoặc b = 0
Đáp án + Giải thích các bước giải:
Ta có t/c rằng số nào nhân với 00 cũng bằng 00
Vậy nếu aa hoặc bb bằng 00 thì a.b=0a.b=0
Vậy chọn A VÀ C
Bạn ra đề sai rồi, cũng có thể cả a và b đều bằng 0 mà