Cho các điểm M(-1; -2), N(-2; -4), P(2; -3), Q(3; -4,5). Tìm tọa độ của các điểm M’, N’, P’, Q’ lần lượt đối xứng với các điểm M, N, P, Q qua trục Ox.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em tìm hiểu định lí Menelaus. Hoặc vào h.vn để các bạn giúp nhé!
Ta có a2= 16 và b2= 12 nên c2= 16-12= 4
=> 2 tiêu cự là F1( -2;0) và F2( 2;0)
Điểm M thuộc (E) và
Từ đó
Chọn C
M(1; 1), N(3; -2), P(-1; 6).
Các đường thẳng qua M cách đều N, P gồm đường thẳng d1 qua M song song NP và đường thẳng d2 đi qua M và trung điểm của NP.
* Đường thẳng d1 đi qua M(1; 1) và nhận P N → ( 4 ; − 8 ) = 4 ( 1 ; − 2 ) là VTCP nên có VTPT n → ( 2 ; 1 )
Phương trình d1 là 2(x- 1) + 1( y – 1)= 0 hay 2x+ y – 3 =0
* Trung điểm A của NP là: x = 3 + ( − 1 ) 2 = 1 y = − 2 + 6 2 = 2 ⇒ A ( 1 ; 2 )
Đường thẳng d2: đi qua M(1; 1) và nhận A M → ( 0 ; − 1 ) làm VTCP nên có VTPT n → ( 1 ; 0 ) .
Phương trình d2: 1(x – 1) + 0( y – 1) = 0 hay x – 1= 0
Đáp án C
Gọi M’, N’, P’, Q’ là các điểm lần lượt đối xứng qua các điểm M, N, P, Q qua trục Ox, ta thấy rằng hoành độ của các điểm đối xứng nhau qua trục hoành bằng nhau, còn tung độ của các điểm đó thì đối nhau: M’(-1; 2); N’(-2; 4); P’(2; 3); Q’(3; 4,5).