K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2016

A= 1-1/2+1/2+1/3 +......+1/99-1/100

=1-1/100

=99/100

4 tháng 5 2023

`A=1/2+1/6+1/12+1/20+1/30+...+1/9900`

`=1/(1xx2)+1/(2xx3)+1/(3xx4)+1/(4xx5)+1/(5xx6)+...+1/(99xx100)`

`=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100`

`=1/1-1/100`

`=100/100-1/100`

`=99/100`

5 tháng 5 2023

=1/(1��2)+1/(2��3)+1/(3��4)+1/(4��5)+1/(5��6)+...+1/(99��100)

=1/1−1/2+1/2−1/3+1/3−1/4+1/4−1/5+1/5−1/6+...+1/99−1/100

=1/1−1/100

=100/100−1/100

=99/100

25 tháng 6 2016

\(\left(1-\frac{2}{6}\right)\left(1-\frac{2}{12}\right)...\left(1-\frac{2}{9900}\right)\)

\(=\frac{4}{6}.\frac{10}{12}...\frac{9898}{9900}\)

\(=\frac{1.4}{2.3}.\frac{2.5}{3.4}...\frac{98.101}{99.100}\)

\(=\frac{1.2...98}{3.4...100}.\frac{4.5...101}{2.3...99}\)

\(=\frac{2}{99.100}.\frac{100.101}{2.3}\)

\(=\frac{101}{99.3}\)

\(=\frac{101}{297}\)

25 tháng 6 2016

đáp số:\(\frac{101}{297}\)

ai k mk mk sẽ k lại ^-^

ta có: 
1/2+1/6+...+1/9900 
=1/1.2+1/2.3...+1/99.100 
=1-1/2+1/2-1/3+1/3-...+1/99-1/100 
=1-1/100 
=99/100

19 tháng 6 2019

\(A=\frac{1}{2}+\frac{1}{6}+\cdot\cdot\cdot+\frac{1}{9900}\)

\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\cdot\cdot\cdot+\frac{1}{99\times100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

4 tháng 1 2015

T= 1 - 1/2 + 1/2 - 1/3 + ......+ 1/99 - 1/100

  = 1 - 1/100

  = 99/100

23 tháng 10 2015

\(t=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(t=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(t=1-\frac{1}{100}=\frac{99}{100}\)

Vậy \(t=\frac{99}{100}\)

23 tháng 10 2015

dấu . hiểu là phép nhân nhé

12 tháng 5 2018

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

12 tháng 5 2018

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\)

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)