1. So sánh hai lũy thừa sau
3111 và 1714
5217 và 119 72
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^{2017}=5^{2016}.5=\left(5^{28}\right)^{72}.5\)
Có \(5^{28}>119\)
\(\Rightarrow\left(5^{28}\right)^{72}>119^{72}\)
\(\Rightarrow5^{2017}>119^{72}\)
a)\(333^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Từ \(\hept{\begin{cases}81^{111}>64^{111}\\111^{444}>111^{333}\end{cases}}\Rightarrow81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
b)\(5^{300}=\left(5^2\right)^{150}=25^{150};4^{453}=\left(4^3\right)^{151}=64^{151}\)
Vì 25150<64151 => 5300<4453
c)\(5^{217}>5^{216}=\left(5^3\right)^{72}=125^{72}>119^{72}\) => \(5^{217}>119^{72}\)
3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300
mk muốn cách giải cơ
chứ dấu thì mk biết rùi