Một lớp có 50 học sinh được chia thành 5 tổ, mỗi tổ có 10 học sinh. Hỏi có bao nhiêu cách chia tổ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Số cách chia tổ là:
$C^{10}_{50}.C^{10}_{40}.C^{10}_{30}.C^{10}_{20}.C^{10}_{10}$
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có cách chọn
Tổ 2 có 2 nữ, 9 nam có cách chọn
Tổ 3 có 2 nữ, 10 nam có cách chọn
Vậy có cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được cách chia.
Vậy có tất cả cách chia
Chọn D.
Mỗi tổ ít nhất 2 nữ \(\Rightarrow\) ta có 3 trường hợp: (2;2;3); (2;3;2); (3;2;2)
TH1: (2;2;3)
Tổ 1: chọn 2 nữ từ 7 nữ có \(C_7^2\) cách, chọn 8 nam từ 26 nam có \(C_{26}^8\) cách
Tổ 2: chọn 2 nữ từ 5 nữ còn lại: \(C_5^2\) ; chọn 9 nam từ 18 nam còn lại: \(C_{18}^9\)
Tổ 3: chọn 3 nữ từ 3 nữ còn lại: \(C_3^3\) ; chọn 9 nam từ 9 nam còn lại: \(C_9^9\)
\(\Rightarrow C_7^2.C_{26}^8+C_5^3.C_{18}^8+C_2^2.C_{10}^{10}\)
Hoàn toàn tương tự, ở TH2 ta được số cách:
\(C_7^2.C_{26}^8+C_5^3.C_{18}^9+C_2^2.C_9^9\)
TH3 ta được số cách: \(C_7^3.C_{26}^7+C_4^2.C_{19}^9+C_2^2.C_{10}^{10}\)
Cộng 3 trường hợp lại ta được kết quả cần tìm
Số cách chia lớp thành 3 tổ thỏa yêu cầu có 3 trường hợp
* TH1: Tổ 1 có 3 nữ, 7 nam có C 7 3 C 26 7 cách chọn
Tổ 2 có 2 nữ, 9 nam có C 4 2 C 19 9 cách chọn
Tổ 3 có 2 nữ, 10 nam có C 2 2 C 10 10 cách chọn
Vậy có C 7 3 C 26 7 C 4 2 C 19 9 cách chia thành 3 tổ trong TH này
* TH2: Tổ 2 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 3 C 18 8 cách chia.
* TH3: Tổ 3 có 3 nữ và hai tổ còn lại có 2 nữ, tương tự tính được C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Vậy có tất cả C 7 3 C 26 7 C 4 2 C 19 9 + C 7 2 C 26 8 C 5 3 C 18 8 + C 7 2 C 26 8 C 5 2 C 18 9 cách chia.
Chọn D.
Gọi số tổ là x
24 ⋮x
20 ⋮ x
ƯC(20,24)=4
Số học sinh nam mỗi tổ là : 24:4=6(học sinh)
Số học sinh nữ mỗi tổ là : 20:4=5(học sinh)
Gọi số tổ là a ( a ∈ N* )
Theo đề ra , ta có :
27 ⋮ a và 18⋮a
⇒a ∈ ƯC(27,18)⇒a ∈ ƯC(27,18)
27 = 33
18 = 2 . 32
ƯCLN(24,18)=2.3=6ƯCLN(24,18)= 32 = 9
ƯC( 27,18 ) =Ư( 9 )={ 1;3;9 }ƯC(27,18)=Ư(9)={1;3;9}
Vậy có tất cả 3 cách chia .
Vì : số học sinh mỗi tổ ít nhất
⇒a=ƯCLN(27,18)
Mà : ƯCLN(27,18) = 9 ⇒a = 9 ƯCLN(27,18) ⇒a = 9
Vậy chia 9 thì số học sinh ở mỗi tổ là ít nhất .
Số học sinh lớp 3A là:
9 x 4 = 36 (học sinh)
Nếu chia lớp 3A thành 3 tổ thì mỗi tổ có:
36 : 3 = 12 (học sinh)
Đáp số: 12 học sinh