K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2017

Giải bài 6 trang 50 sgk Hình học 12 | Để học tốt Toán 12Giải bài 6 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Mặt khác 

Suy ra Í=IIA=IB=IC=ID=3a/4

Vậy mặt cầu ngoại tiếp hình chóp S.ABCD có tâm I và bán kính R=SI=3a/4

Diện tích mắt cầu là: 

Thể tích khối cầu là:

1 tháng 4 2017

Giải bài 6 trang 50 sgk Hình học 12 | Để học tốt Toán 12

Qua O vẽ đường thẳng d vuông góc với (ABCD)

Khi đó d là trục đường tròn ngoại tiếp hình vuông ABCD

Gọi H là trung điểm của cạnh SA

Trong mặt phẳng (SAO) đường trung trực của đoạn SA cắt đường thẳng SO tại I , ta có: \(\Delta SAO\) đòng dạng \(\Delta SIH\)

\(\Rightarrow\dfrac{SA}{SO}=\dfrac{SI}{SH}\Leftrightarrow SI=\dfrac{SA.SH}{SO}=\dfrac{SA^2}{2SO}\)

\(SA^2=SO^2+OA^2=\left(\dfrac{a}{2}\right)^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2=\dfrac{3a^2}{4}\)

\(\Leftrightarrow SA=\dfrac{a\sqrt{3}}{2}\)

Khi đó \(SI=\dfrac{3a^2}{\dfrac{4}{2.\dfrac{a}{2}}}=\dfrac{3a}{4}\)

Mặt khác \(\left\{{}\begin{matrix}IS=IA\\IA=IB=IC=ID\end{matrix}\right.\)

\(\Rightarrow IS=IA=IB=IC=ID=\dfrac{3a}{4}\)

Vậy mặt cầu ngoại tiếp hình chóp S.ABCD có tâm là I và bán kính \(R=SI=\dfrac{3a}{4}\)

Diện tích mặt cầu là: \(S=4\pi R^2=4\pi.\left(\dfrac{3a}{4}\right)^2=\dfrac{9\pi\pi^2}{4}\)

Thể tích khối cầu là: \(V=\dfrac{4}{3}\pi R^2=\dfrac{4}{3}\pi.\left(\dfrac{3a}{4}\right)^2=\dfrac{9\pi\pi^2}{16}\)

9 tháng 7 2019

Xác định được 

Tính được 

Suy ra tam giác SBD vuông tại S. Vậy các đỉnh S, A, C cùng nhìn xuống BD dưới một góc vuông nên 

Chọn B.

6 tháng 2 2017

24 tháng 5 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Trong mặt phẳng chứa đường tròn tâm O ngoại tiếp tứ giác ABCD ta kẻ đường kính qua O vuông góc với dây cung AC tại I. Ta có IA = IC và OI // BD. Gọi O’ là tâm mặt cầu đi qua 5 đỉnh của hình chóp. Khi đó điểm O’ phải nằm trên trục d của đường tròn ngoại tiếp tứ giác ABCD. Ta có d ⊥ (ABCD) tại O. Gọi M là trung điểm của cạnh SC. Ta có MI // SA nên MI  ⊥ (ABCD) tại I. Từ M kẻ đường thẳng d’ // OI cắt d tại O’. Vì d′  (SAC) tại M nên ta có O’C = O’S và O’C là bán kính r của mặt cầu ngoại tiếp hình chóp S.ABCD

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

11 tháng 12 2019

24 tháng 9 2019

Chọn đáp án A

+ Gọi O là tâm của hình vuông ABCD. Qua O ta dựng đường thẳng d vuông góc với mặt đáy.

+ Gọi E, K, F, H, N lần lượt là trung điểm của các đoạn thẳng SD, SC, BC, AD, EK

+ Ta có tam giác SDF là tam giác cân tại F. Vì FD = FS = a 5  (độc giả tự chứng minh)

Suy ra FE ⊥ SD

Mặt khác, ta có KE // FH (Vì cùng song song với CD). Nên 4 điểm K, E, F, H đồng phẳng

+ Trong mặt phẳng (KEFH), gọi T là giao điểm của FE và ON.

Ta có T là tâm mặt cầu ngoại tiếp hình chóp S. ABCD

+ Ta có tam giác EKO là tam giác đều cạnh a. Nên

Bán kính mặt cầu là

+ Xét tam giác vuông TOB vuông tại B, ta có

20 tháng 6 2019

Đáp án D

Gọi H là trung điểm của AB, do tam giác SAB đều nên SH AB mà (SAB) (ABCD) nên SH (ABCD)

Gọi O là tâm của hình vuông ABCD, d là đường thẳng qua O và song song SH thì d (ABCD) hay d là trục đường tròn ngoại tiếp hình vuông ABCD

Trong mặt phẳng (SAB) từ G kẻ đường thẳng vuông góc với (SAB) cắt d tại I thì I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD, bán kính R = IS.

23 tháng 4 2017

Đáp án D

Ta có mặt cầu S(A;r) tiếp xúc với mặt phẳng (SBC) khi và chỉ khi r = d(A; (SBC)).

Hạ AH  SB tại H. Do BC  AB và BC  SA nên BC  (SAB) , suy ra BC  AH.

Mặt khác AH  SB nên AH  (SBC) hay d(A; (SBC)) = AH Xét tam giác vuông SAB ta có: