Trong mặt phẳng tọa độ Oxy cho tam giác ABC có D(3;4), E (6;1), F (7;3) lần lượt là trung điểm các cạnh AB, BC,CA. Tính tổng tung độ của ba đỉnh tam giác ABC.
A. 16 3
B. 8 3
C. 8
D. 16
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tọa độ trọng tâm G x G ; y G là x G = 1 − 2 + 5 3 = 4 3 y G = 3 + 4 + 3 3 = 10 3 .
Chọn D.
Gọi I(a; b) là tâm đường tròn ngoại tiếp tam giác ABC.
A I 2 = B I 2 A I 2 = C I 2 ⇔ a − 0 2 + b − 2 2 = a + 2 2 + b − 8 2 a − 0 2 + b − 2 2 = a + 3 2 + b − 1 2
⇔ a 2 + b 2 − 4 b + 4 = a 2 + 4 a + 4 + b 2 − 16 b + 64 a 2 + b 2 − 4 b + 4 = a 2 + 6 a + 9 + b 2 − 2 b + 1
4 a − 12 b = − 64 6 a + 2 b = − 6 ⇔ a − 3 b = − 16 3 a + b = − 3
⇔ a = − 5 2 b = 9 2
Chọn B.
vecto AB=(-7;0)
vecto DC=(3-x;5-y)
Vì ABCD là hình bình hành
nên vecto AB=vecto DC
=>3-x=-7; 5-y=0
=>x=10; y=5
\(\overrightarrow{BC}=\left(-4;-4\right)=-4\left(1;1\right)\)
Phương trình BC: \(1\left(x-4\right)-1\left(y-1\right)=0\Leftrightarrow x-y-3=0\)
Phương trình AH qua A và vuông góc BC:
\(1\left(x-1\right)+1\left(y-2\right)=0\Leftrightarrow x+y-3=0\)
H là giao điểm AH và BC nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-y-3=0\\x+y-3=0\end{matrix}\right.\) \(\Rightarrow H\left(3;0\right)\)
\(\Rightarrow\overrightarrow{AH}=\left(2;-2\right)\Rightarrow AH=2\sqrt{2}\)
Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$
$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$
$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$
$\Leftrightarrow (5-3a, -1-3b)=(0,0)$
$\Rightarrow 5-3a=0; -1-3b=0$
$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$
b.
Để $A,B,D$ thẳng hàng thì:
$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$
$\Leftrightarrow (1,-7)=k(-2, 3m-1)$
$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$
$\Rightarrow m=5$
A B → = 3 ; 12 , A C → = 4 ; − 1 ⇒ ( A B ) ⃗ . ( A C ) ⃗ = 3 . 4 + 12 . ( - 1 ) = 0 ⇒ ∆ A B C vuông tại A. Trực tâm của tam giác là đỉnh A. Chọn B
1, Gọi tọa độ điểm D(x;y)
Ta có:\(\overrightarrow{AB}\left(8;1\right)\)
\(\overrightarrow{DC}\left(1-x;5-y\right)\)
Tứ giác ABCD là hình bình hành khi
\(\overrightarrow{AB}=\overrightarrow{DC}\)
\(\Leftrightarrow1-x=8;5-y=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-7\\y=4\end{matrix}\right.\)
Vậy tọa độ điểm D(-7;4)
vecto AH=(x+2;y-4); vecto BC=(-6;-2)
vecto BH=(x-4;y-1); vecto AC=(0;-5)
Theo đề, ta có: -6(x+2)-2(y-4)=0 và 0(x-4)-5(y-1)=0
=>y=1 và -6(x+2)=2(y-4)=2*(1-4)=-6
=>x+2=1 và y=1
=>x=-1 và y=1
Đáp án là C