Cho hình lập phương A B C D . A ' B ' C ' D ' . Mặt phẳng B D C ' chia khối lập phương thành hai phần. Tính tỉ lệ thể tích phần nhỏ so với phần lớn
A. 5 6
B. 1 5
C. 1 3
D. 1 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có: V A B C D . A ' B ' C ' D ' = a 3 .
Lại có: V C . B D C = 1 3 C C ' . S B D C = a 3 6
Do đó: V t = a 3 − a 3 6 = 5 a 3 6 ⇒ V b V t = 1 5 .
Đáp án B
Gọi tâm O, O’ lần lượt là tâm của ABCD, A’B’C’D’. Ta có
Qua I ta kẻ đường thẳng d song song BD cắt BB', DD' lần lượt tại M, N . Mặt phẳng ( α ) chính là mặt phẳng (KMAN) chia khối lập phương thành 2 phần.
Ta có 2 phần khối đa diện đối xứng qua (AA'C'C) nên ta chỉ cần xét một nửa thể tích của mỗi phần như sau:
Đáp án B
Gọi tâm O, O’ lần lượt là tâm của ABCD, A’B’C’D’. Ta có I = A K ∩ O O '
Qua I ta kẻ đường thẳng d song song BD cắt BB', DD' lần lượt tại M, N . Mặt phẳng α chính là mặt phẳng (KMAN) chia khối lập phương thành 2 phần.
Ta có 2 phần khối đa diện đối xứng qua (AA'C'C) nên ta chỉ cần xét một nửa thể tích của mỗi phần như sau:
Chọn D.
Dễ thấy A'A, B'M, D'N đồng quy tại S, SA' = 2a. Từ đó, ta tính được V S . A ' B ' D ' và V S . AMN . Suy ra tính được V H
Chọn A
Phương pháp: .
Cách giải: Dựng hình như hình vẽ.
Trước hết ta tính thể tích khối chóp A.A'MN.
Đáp án B
Dễ dàng chứng minh B, M lần lượt là trung điểm PC và AB
Đáp án C
Gọi O là tâm hình vuông ABCD ta có:
A C ⊥ B D B D ⊥ S A ⇒ B D ⊥ S A C
Dựng O K ⊥ S C ⇒ O K là đoạn vuông góc chung của BD và SC
Khi đó d B D ; S C = O K = 1 2 d A ; S C = 1 2 S A . A C S A 2 + A C 2
Với A C = a 2 ⇒ d = a 6 6 .