K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2021

Giải: a/ Vì D đối xứng với M qua trục AB
=> AB là đường trung trực của MD.
=> AD = AM (tính chất đường trung trực) (l)
=> Vì E đối xứng với M qua trục AC
=> AC là đường trung trực của ME.
=> AM = AE (tính chất đường trung trực) (2)
=> Từ (1) và (2) suy ra: AD = AE

BN tham khảo

Áp dụng tính chất của tam giác cân cho DABC ta có: AM ^ MC và BM = MC

I là trung điểm của AC và K đối xứng với M qua I nên tứ giác AMCK  là hình bình hành

Lại có MK = AC (=2MI)

Þ Tứ giác AMCK là hình chữ nhật.

Vì tứ giác AMCK là hình chữ nhật (chứng minh ở a) Þ AK//MC và AK = MC = MB nên tứ giác AKMB là hình bình hành.

Nếu tứ giác AKMB là hình thoi thì BA = AK = KM= MB.

Þ DMBA cân tại B Þ B A M ^ = A M B ^  = 900 Þ vô lý.

Vậy không có trường hợp nào của D ABC để AKMB là hình thoi.

25 tháng 12 2021

a: Xét tứ giác AMCD có

I là trung điểm của AC

I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

25 tháng 12 2021

câu b

ko biết giúp với

 

25 tháng 12 2021

a: Xét tứ giác AMCD có

I là trung điểm của AC
I là trung điểm của MD

Do đó: AMCD là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCD là hình chữ nhật

11 tháng 12 2021

Đề sai rồi bạn

24 tháng 11 2021

QDSHYFT

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCKlà hình chữ nhật

b: Xét tứ giác AKMB có

AK//MB

AK=MB

Do đó: AKMB là hình bình hành

a) Xét ΔABC có

K là trung điểm của AB(gt)

I là trung điểm của AC(gt)

Do đó: KI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KI//BC và \(KI=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)

Xét tứ giác BKIC có KI//BC(cmt)

nên BKIC là hình thang có hai đáy là KI và BC(Định nghĩa hình thang)

Hình thang BKIC(KI//BC) có \(\widehat{KBC}=\widehat{ICB}\)(hai góc ở đáy của ΔABC cân tại A)

nên BKIC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét ΔABC cân tại A có AM là đường trung tuyến ứng với cạnh đáy BC(gt)

nên AM là đường cao ứng với cạnh đáy BC(Định lí tam giác cân)

\(\Leftrightarrow AM\perp BC\)

hay \(\widehat{AMC}=90^0\)

Xét tứ giác AMCN có 

I là trung điểm của đường chéo AC(gt)

I là trung điểm của đường chéo MN(M và N đối xứng nhau qua I)

Do đó: AMCN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AMCN có \(\widehat{AMC}=90^0\)(cmt)

nên AMCN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Ta có: AMCN là hình chữ nhật(cmt)

nên AN//MC và AN=MC(Hai cạnh đối trong hình chữ nhật AMCN)

mà B\(\in\)MC và MB=MC(M là trung điểm của BC)

nên AN//BM và AN=BM

Xét tứ giác ANMB có

AN//BM(cmt)

AN=BM(cmt)

Do đó: ANMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và BN cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(1)

Xét ΔABC có 

K là trung điểm của AB(gt)

M là trung điểm của BC(Gt)

Do đó: KM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

nên KM//AC và \(KM=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà I\(\in\)AC và \(AI=\dfrac{AC}{2}\)(I là trung điểm của AC)

nên KM//AI và KM=AI

Xét tứ giác AIMK có

KM//AI(cmt)

KM=AI(cmt)

Do đó: AIMK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

nên Hai đường chéo AM và KI cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)(2)

Từ (1) và (2) suy ra AM,BN và IK đồng quy(đpcm)

28 tháng 12 2021

a, tứ giác AMCD có: ID=IM;IA=IC

⇒tứ giác AMCD là hình bình hành

Lại có:góc AMC=90 độ (ΔABC cân tại A có AM là đường trung tuyến)

⇒tứ giác AMCD là hình chữ nhật

28 tháng 12 2021

b, Ta có AD//CM và AD=CM (tứ giác ADCM là hình chữ nhật)

    mà B∈CM và BM=CM

   ⇒AD//BM và AD=BM

   ⇒tứ giác ABMD là hình bình hành