Cho A là số tự nhiên có 3 chữ số .Viết các chữ số của A theo thứ tự ngược lại ta được số tự nhiên B.Hỏi hiệu 2 số đó có chia hết cho 3 không?Tại sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số A là bcd với b, c; d là chữ số
A = bcd và B = dcb
Nếu b = d -> A - B = 0 -> A - B chia hết cho 3
Nếu b > d x d
Thì bcd - dcb = 100 x b + 10 x c + d - 100 x d - 10 x c + b
= 99 x b - 99 x d = 99 x (b - d)
99 x (b - d) chia hết cho 3
A - B cũng chia hết cho
Nếu d > b cũng tương tư như trên
99 x (d - b) chia hết cho 3
Và A - B cũng chia hết cho 3
Kết luận : A - B chia hết cho 3
có chia được cho 3 nếu có điều kiện tổng các số chia hết cho 3
không nếu tổng các chữ số không chia hết được cho 3
Có.
Vd: 321-123=198 chia hết cho 3.
542-245=297 chia hết cho 3.
Gọi số A là abc. Theo đề ta có :
\(A-B=\overline{abc}-\overline{cba}=\left(a-c\right)\cdot100+c-a=a\cdot100-c\cdot100+c-a=99\cdot a-99\cdot c\)
Mà 99 chia hết cho 9
Nên hiệu hai số A và B chia hết cho 9
Bài làm:
Đặt số tự nhiên bất kì đó là: \(A=\overline{abc}\) với \(\hept{\begin{cases}a>0\\b,c\ge0\end{cases}}\)
Khi đó \(B=\overline{cba}\)
Xét hiệu \(A-B=\overline{abc}-\overline{cba}\)
\(=100a+10b+c-100c-10b-a\)
\(=99a-99c=99\left(a-c\right)\)
Vì 99 chia hết cho 99 => 99(a-c) chia hết cho 99
=> A - B chia hết cho 99
Gọi số cần tìm là abc số viết ngược lại là cba. Ta có :
abc - cba = 297
=> 100a + 10b + c - (100c + 10b + a) = 297
=> 99a - 99c = 297
=> a - c = 297/99 = 3.
Vì abc chia hết cho 45 => abc chia hết cho 5 và 9 => c = 5.
=> a = 3 + c = 3 + 5 = 8.
Xét số 8b5 (có gạch đầu) chia hết cho 9
=> 8+ b + 5 chia hết cho 9
=> 13 + b chia hết cho 9
=> b = 5.
Vậy số thỏa mãn đề bài cần tìm là 855.
giả sử số đó là abcd
abcd x 9 = dcba
ta có vì abcd và dcba là số có 4 chữ số
nên ta có : a.10^3 x 9 = d.10^3 => a =1 => d =9
**Xét abcd : vì a =1 => b x 9 < số có 2 chữ số => b=1 hoặc b=0
với b =1 thì 11c9 x 9 = 9c11
vì b=1 =>11c9 x 9 có c x 9 là số bé hơn 2 chữ số => c =1 hoặc c =0 => vô lý
với b = 0 thì 10c9 x 9 = 9c01 =>c = 8
=> 1089 x 9 = 9801 Gọi số cần tìm là abcd ( a # 0). Theo giả thiết: abcd *9=dbca
Nhận xét được luôn là a= 1 (vì từ 2 trở đi thì kết quả đã là số có 5 chữ số rồi nhỉ?). a=1 và nhận xét thêm là 1*9= 9 là số lớn nhất có thể của d rồi nên d=9. Vậy phép nhân b*9 không được nhớ vào phép a*9 nên b=1 hoặc b=0. Với b=1 thì lập luận c*9 rồi cộng với 8 phải có tận cùng là 1 thì c=7. Thử lại thấy 1179*9= 10611!! không hợp lý. Vậy loại b=1. Với b=0 ta lại nhận xét c*9 rồi cộng với 8 phải là số có tận cùng là 0 nên c=8. Thử lại thấy: 1089*9= 9801. Vậy đây là kết quả cần tìm Goi số cần tìm là abcd, theo đề bài ta có :
abcd
x 9
dcba
Từ trên ta suy ra : 9 nhân a hàng nghìn phải là số có 1 chữ số ở tích là d, và 9 nhân b hàng trăm không có nhớ. Từ đó ta tính được :
Vậy : a = 1, b = 0 , c = 2 , d = 9
Ta có phép tính đúng là : 1209 x 9 = 9021 vì số có 4 chữ số khi nhân 9 vẫn có 4 chữ số ---> số đầu chắc chắn phải là 1
vậy, số cuối bắt buộc phải = 9
số thứ 2 sau khi nhân 9 bắt buộc phải có 1 chữ số và ko được nhớ ---> số thứ 2 là 0
kết quả chia hết cho 9 ---> số thứ 3 phải là 9
đáp số: 1089