K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2019


22 tháng 11 2018


13 tháng 2 2019

Đáp án B

Phương pháp:

Tính bán kính hai khối cầu dựa vào các mối quan hệ đường tròn nội tiếp tam giác.

Tính thể tích hai khối cầu đã cho theo công thức V = 4 3 π . R 3 và suy ra kết luận.

Cách giải: Cắt món đồ chơi đó bằng mặt phẳng đứng đi qua trục hình nón.

Gọi P, H, K lần lượt là hình chiếu vuông góc của M, I, J trên AB.

Vì  B A C = 2 β = 60 ° , A M = 9 c m .

⇒ B M = M C = 3 3 A B = A C = 6 3 = B C ⇒ Δ A B C  đều.

Vì IM là bán kính mặt cầu nội tiếp tam giác đều ABC nên  I H = I M = A M 3 = 3

Gọi là tiếp tuyến chung của hai đường tròn. Vì Δ A B C đều nên dẫn đến Δ A B ' C '  đều.

Suy ra bán kính đường tròn nội tiếp:

J K = J G = A G 3 = A M 9 = 1

Vậy tổng thể tích là:

V 1 + V 2 = 4 3 π . I H 3 + 4 3 π . J K 3 = 112 π 3

Chú ý khi giải:

Cần chú ý vận dụng các mối quan hệ đường tròn nội, ngoại tiếp tam giác đều trong việc tính bán kính các khối cầu.

8 tháng 2 2017

7 tháng 10 2017


25 tháng 9 2017

Đáp án đúng : D

10 tháng 6 2017

24 tháng 9 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét mặt phẳng (DAM) đi qua đỉnh D tạo với mặt phẳng đáy một góc 600, cắt đường tròn đáy tại hai điểm A và M. Từ tâm O của đường tròn đáy ta vẽ OH ⊥ AM, do vậy H là trung điểm của đoạn AM. Ta có AM  ⊥  (DOH) vì AM  ⊥  OH và AM  ⊥  DO.

Vậy ∠ DHO = 60 °  và Giải sách bài tập Toán 12 | Giải sbt Toán 12

hay Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi SΔ DAM là diện tích thiết diện cần tìm, ta có: S △ DAM  = AH.DH

Mà Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

1 tháng 4 2019

1 tháng 1 2020