Tìm các giá trị của tham số m để đồ thị hàm số: y = x 4 - ( 3 m - 1 ) x 2 + 2 m + 1 có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với điểm D ( 7 ; 3 ) nội tiếp được một đường tròn
A. m = 3
B. m = 1
C. m = -1
D. Không tồn tại m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1 và y=-1 vào (d), ta được:
\(\left(m-2\right)\cdot1+m+1=-1\)
=>m-2+m+1=-1
=>2m-1=-1
=>2m=0
=>m=0
b: Thay y=0 vào y=x+2, ta được:
x+2=0
=>x=-2
Thay x=-2 và y=0 vào y=(m-2)x+m+1, ta được:
-2(m-2)+m+1=0
=>-2m+4+m+1=0
=>5-m=0
=>m=5
- Với \(m=0\Rightarrow y=-x^2-2\) chỉ có cực đại (thỏa mãn)
- Với \(m\ne0\) hàm chỉ có cực đại khi:
\(\left\{{}\begin{matrix}m< 0\\m\left(2m-1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow m< 0\)
Vậy \(m\le0\)
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
Chọn D.
TXĐ: D = R.
Đồ thị hàm số có 3 điểm cực trị ⇔ y' = 0 có ba nghiệm phân biệt ⇔ m -1 > 0 ⇔ m > 1(*)
3 điểm cực trị của đồ thị hàm số là: A(0;1),
Hàm số đã cho là hàm số chẵn nên đồ thị hàm số nhận Oy làm trục đối xứng
Ta có
Kết hợp với điều kiện (*) => m = 2
Làm theo bào toán trắc nghiệm như sau:
Hàm số đã cho có 3 điểm cực trị khi ab < 0
Chỉ có đáp án D thỏa mãn.
a.
ĐTHS song với với đường thẳng đã cho khi:
\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)
b.
Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)
\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Thế tọa độ A vào (1):
\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
Chọn A
[Phương pháp trắc nghiệm]
Hàm số có 3 điểm cực trị khi m > 1 3
Áp dụng công thức:
Phương trình đường tròn ngoại tiếp ∆ A B C là:
Thay vào ta có phương trình:
Sử dụng chức năng SOLVE ,
tìm ra nghiệm duy nhất thỏa mãn là m = 3