K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: BC ⊥ (ADH) và DH = a.

● Δ ABC đều, H là trung điểm BC nên AH  BC, AD  BC

⇒ BC ⊥ (ADH) ⇒ BC ⊥ DH.

⇒ DH = d(D, BC) = a

11 tháng 11 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

CMR: DI ⊥ (ABC).

● AD = a, DH = a ΔDAH cân tại D.

- Mặt khác I là trung điểm của AH nên DI ⊥ AH.

● BC ⊥ (ADH) ⇒ BC ⊥ DI.

⇒ DI ⊥ (ABC).

8 tháng 5 2019

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

Tính khoảng cách giữa AD và BC.

● Trong ΔADH vẽ đường cao HK tức là HK ⊥ AD (1)

- Mặt khác BC ⊥ (ADH) nên BC ⊥ HK (2)

- Từ (1) và (2) ta suy ra d(AD, BC) = HK.

● Xét ΔDIA vuông tại I ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

● Xét ΔDAH ta có:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 3)

8 tháng 8 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Tam giác ABC cân đỉnh A và có I là trung điểm của BC nên AI ⊥ BC. Tương tự tam giác DBC cân đỉnh D và có có I là trung điểm của BC nên DI ⊥ BC. Ta suy ra:

BC ⊥ (AID) nên BC ⊥ AD.

b) Vì BC ⊥ (AID) nên BC ⊥ AH

 

Mặt khác AH ⊥ ID nên ta suy ra AH vuông góc với mặt phẳng (BCD).

5 tháng 8 2018

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

a) Tam giác ABC cân tại A có AI là đường trung tuyến nên đồng thời là đường cao:

AI ⊥ BC

+) Tương tự, tam giác BCD cân tại D có DI là đường trung tuyến nên đồng thời là đường cao:

DI ⊥ BC

+) Ta có: Giải bài tập Toán 11 | Giải Toán lớp 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối...
Đọc tiếp

1, Cho tứ giác ABCD, các đường chéo AC và BD cắt nhau tại O. Các cạnh AD, BC kéo dài cắt nhau tại E. Biết AC vuông góc AD và BD vuông góc BC. Chứng minh rằng đường thẳng d đi qua các trung điểm OE và CD là trục đối xứng của cạnh AB

2, Cho 2 điểm A, B nằm trên nửa mặt bờ là đường thẳng d. Gọi AH, BK là các đường vuông góc kẻ từ A, B đến d. Gọi C là điểm nằm bất kì giữa H và K, A' đối xứng với A qua d, Giả sử góc ACH = góc BCK

  a, Chứng minh rằng kí đó A' , C , B thẳng hàng

  b, Nêu cách dựng điểm C sao cho AC + BC bé nhất

3, Cho tam giác ABC. Dựng hình đối xứng với tam giác đã cho qua trung điểm D của cạnh BC

  a, Tứ giác tạo thành là hình gì

  b, Tính chu vi tứ giác đó biết AB = 10cm, AC = 7cm

4, Cho hình bình hành với E, F lần lượt là trung điểm của AD, BC; G thuộc đoạn AB. Gọi H và I lần lượt là điểm đối xứng của G qua E và F

  a, Chứng minh H, D, C, I thẳng hàng

  b, Chưng minh HI = 2CD

0
 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
25 tháng 8 2017

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.

⇒ IK ⊥ AD (2)

Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.

31 tháng 3 2017

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 104 sgk Hình học 11 | Để học tốt Toán 11