cho tam giác ABC có 2 cạnh góc vuông AB=3 cm AC=4cm .Tính khoảng cách từ đỉnh A đến trọng điểm G của tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo tại đây:
https://olm.vn/hoi-dap/detail/4163827016.html
ΔABC vuông tại A có BC2 = AB2 + AC2 (định lí Pitago)
⇒ BC2 = 32 + 42 = 25 ⇒ BC = 5 (cm)
Gọi M là trung điểm của BC ⇒ AM là trung tuyến.
Vì theo đề bài: trong một tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên
tự vẽ hình ta vẽ AK là đường trung tuyến của cạnh huyền
xét tam giác ABC có:
AB2+AC2 = BC2 ( đ/lý py-ta-go)
=> 32 + 42 = BC2
=> 9 + 16 = BC2
=> BC = 25
=> BC = \(\sqrt{25}=5cm\)
tam giác ABC có AK là đường trung tuyến vs cạnh huyền => AK = \(\frac{BC}{2}=\frac{5}{2}=2,5\)
=> AG = \(\frac{2}{3}AK\) (đ/lý) => \(\frac{2}{3}x2,5=1,66666667\)
hình như mk làm sai hoặc bn sai đề
để ghi lại khúc cuối
AG = \(\frac{2}{3}AK=>\frac{2}{3}x\frac{5}{2}=\frac{5}{3}cm\)
có \(5:2=\frac{5}{2}\) nên mới có 5/2
Gọi D là trung điểm BC; E là trung điểm AC
Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25
=> BC = 5
Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD
mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5
Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3
∆ABC vuông tại A => BC2 = AB2 + AC2
BC2 = 32 + 42
BC2 = 25
BC = 5
Gọi M là trung điểm của BC => AM là trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền nên AM = BC
Vì G là trọng tâm của ∆ ABC nên AG = AM => AG =. BC
=> AG = BC = .5 = 1.7cm
Gọi D là trung điểm BC; E là trung điểm AC
Trong tam giác ABC có BC2 = AB2 + AC2 = 32 + 42 = 25
=> BC = 5
Trong tam giác vuông ABC có AD là đường trung tuyến ứng với cạnh huyền BC nên AD = BD = CD
mà BD = CD = BC/2 = 5/2 = 2,5 nên AD = 2,5
Ta có AG/AD = 2/3 => AG = (AD.2)/3 = (2,5 x 2)/3 = 5/3