Trong không gian O x y z , cho đường thẳng d : x − 1 − 1 = y + 4 2 = z − 3 3 . Véctơ nào sau đây không phải là véctơ chỉ phương của đường thẳng d?
A. a → = − 1 ; 2 ; 3 .
B. a → = 3 ; − 6 ; − 9 .
C. a → = 1 ; − 2 ; − 3 .
D. a → = − 2 ; 4 ; 3 .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Đáp án A.
Đường thẳng d qua điểm M(2;-2;1) và có vectơ chỉ phương u → = ( - 3 ; 1 ; - 2 )
Đường thẳng d' qua điểm N(0;4;2) và có vectơ chỉ phương u ' → = 6 ; - 2 ; 4
Ta có - 3 6 = 1 - 2 = - 2 4 nếu u → , u ' → cùng phương. Lại có M 2 ; - 2 ; - 1
Vậy d ∥ d '
Chọn D
Đường thẳng d₁ đi qua điểm M₁ = (3;-1;-1) và có một véctơ chỉ phương là
Đường thẳng d₂ đi qua điểm M₂ = (0;0;1) và có một véctơ chỉ phương là
Do và M₁ ∉ d₁ nên hai đường thẳng d₁ và d₂ song song với nhau.
Gọi (α) là mặt phẳng chứa d₁ và d₂ khi đó (α) có một véctơ pháp tuyến là . Phương trình mặt phẳng (α) là x+y+z-1=0.
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d₁ và d₂.
Chọn D
Đường thẳng d1 đi qua điểm M1 (3; -1; -1) và có một véctơ chỉ phương là
Đường thẳng d2 đi qua điểm M2 (0; 0; 1) và có một véctơ chỉ phương là
Do và M1 ∉ d1 nên hai đường thẳng d1 và d2 song song với nhau.
Gọi (α) là mặt phẳng chứa d1 và d2 khi đó (α) có một véctơ pháp tuyến là
Phương trình mặt phẳng (α) là x + y + z -1 = 0
Gọi A = d3 ∩ (α) thì A (1; -1; 1)
Gọi B = d4 ∩ (α) thì B (-1; 2; 0)
Do không cùng phương với nên đường thẳng AB cắt hai đường thẳng d1 và d2.
Đáp án D