K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2017

Đáp án B

Ta có  1 + x 2018 = ∑ k = 0 2018 C 2018 k x k = C 2018 0 + C 2018 1 x + ... + C 2018 2018 x 2018 .

Chọn   x = 1 ⇒ 2 2018 = C 2018 0 + C 2018 1 + ... + C 2018 2018 .

Vì C n k = C n n − k ⇒ 2 2018 = 2 C 2018 1010 + C 2018 1011 + C 2018 2018 + C 2018 1009 = 2 S + C 2018 1009 ⇒ S = 2 2017 + 1 2 C 2018 1009 .  

4 tháng 1 2017

23 tháng 5 2018

15 tháng 5 2017

31 tháng 8 2019

19 tháng 5 2017

27 tháng 11 2018

Vào đây tham khảo nha ! : Câu hỏi của Phạm Chí Cường - Toán lớp 6 | Học trực tuyến

24 tháng 9 2019

Ta có a^2018 + b^2018 +c^2108 = a^1009b^1009 + b^1009c^1009 +c^1009a^1009

       => a^2018 + b^2018 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009 =0

      => 2( a^2018 +b^2108 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009) =0

      => [(a^1009)^2 -2a^1009b^1009 +(b^1009)^2] + [(b^1009)^2 -2b^1009c^1009 +(c^1009)^2] +[(c^1009)^2 -2c^1009a^1009 +(c^1009)^2] =0

     => (a^1009 -b^1009)^2 + (b^1009 -c^1009)^2 + (c^1009 -a^1009)^2 =0

   Vì (a^1009 -b^1009)^2 , (b^1009-c^1009)^2 , (c^1009- a^1009)^2 >_0 ( với mọi a,b,c)

    => a^1009 -b^1009 =0 , b^1009-c^1009 =0 , c^1009-a^1009 =0

   => a=b=c=0

 Thay vào A : A=0

Vậy A=0

25 tháng 8 2020

Ta có: \(x^2+y^2+z^2\ge xy+yz+zx\)

\(\Rightarrow a^{2018}+b^{2018}+c^{2018}\ge\left(ab\right)^{1009}+\left(bc\right)^{1009}+\left(ca\right)^{1009}\)

Dấu = xảy ra \(\Leftrightarrow a=b=c\)

Mà đẳng thức trên xảy ra dấu =

\(\Leftrightarrow a=b=c\Leftrightarrow P=0\)

Bài kia tí nghĩ nốt, khó v

26 tháng 8 2020

Sửa đề em nhé: \(\frac{2}{ab}-\frac{1}{c^2}=4\) và tính \(a+b+2c\)

Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{c^2}+\frac{2}{bc}+\frac{2}{ca}+4=4\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{c}\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{-1}{c}\\\frac{1}{b}=\frac{-1}{c}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-c\\b=-c\end{cases}}\)\(\Leftrightarrow a+b+2c=0\)