Biết rằng các số thực a, b thay đổi sao cho hàm số f x = − x 3 + x + a 3 + x + b 3 luôn đồng biến trên khoảng − ∞ ; + ∞ . Tìm giá trị nhỏ nhất của biểu thức P = a 2 + b 2 − 4 a − 4 b + 2.
A. − 4
B. − 2
C. 0
D. 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có
f ' x = 3 x + a 2 + x + b 2 − x 2 = 3 x 2 + 2 a + b x + a 2 + b 2
Để hàm số luôn đồng biến trên − ∞ ; + ∞
thì Δ ' = a + b 2 − a 2 + b 2 ≤ 0 ⇔ a b ≤ 0
Ta có
P = a 2 + b 2 − 4 a − 4 b + 2 = a + b − 2 2 − 2 a b − 2 ≥ − 2.
Dâu bằng xảy ra khi a + b = 2 a b = 0 ⇔ a = 2 b = 0 hoặc ngược lại.
a: Hàm số này đồng biến vì \(2-\sqrt{3}>0\)
b: \(f\left(2+\sqrt{3}\right)=4-3-1=0\)
\(f\left(\sqrt{3}\right)=2\sqrt{3}-3-1=2\sqrt{3}-4\)
a: Để hàm số đồng biến thì m-3>0
hay m>3
b: Thay x=-1 và y=1 vào (d), ta được:
-m+3+m-2=1
hay 1=1(đúng)
\(c,y=2x+2-2x=2\\ d,y=3x-3-x=2x-3\\ f,y=x+\dfrac{1}{x}=\dfrac{x^2+1}{x}\)
Hs bậc nhất là a,b,d,e
\(a,-2< 0\Rightarrow\text{nghịch biến}\\ b,\sqrt{2}>0\Rightarrow\text{đồng biến}\\ d,2>0\Rightarrow\text{đồng biến}\\ e,-\dfrac{2}{3}< 0\Rightarrow\text{nghịch biến}\)
Đáp án B
Ta có: f ' x = − 3 x 2 + 3 x + a 2 + 3 x + b 2 = 3 x 2 + 6 a + b x + 3 a 2 + 3 b 2
Để hàm số đồng biến trên − ∞ ; + ∞ thì f ' x ≥ 0 ∀ x ∈ − ∞ ; + ∞
⇔ 3 x 2 + 6 a + b x + 3 a 2 + 3 b 2 ≥ 0 ∀ x ∈ ℝ ⇔ x 2 + 2 a + b x + a 2 + b 2 ≥ 0 ∀ x ∈ ℝ ⇔ Δ ' = a + b 2 − a 2 + b 2 ≤ 0 ⇔ 2 a b ≤ 0 ⇔ a b ≤ 0
TH1: b = 0 ⇒ P = a 2 − 4 a + 2 = a − 2 2 − 2 ≥ − 2 1
TH2: a > 0 , b < 0 ⇒ P = a − 2 2 + b 2 + − 4 b − 2 > − 2 2
Từ (1) và (2) ⇒ P min = − 2 k h i a = 0 hoặc b = 0.