Cho hình chữ nhật ABCD, BH vuông góc AC, M trung điểm AH, K song song CD, N song song BH.
a, Chứng minh: MNCK là hình bình hành.
b, Tính: góc BMK.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
hay MN//KC và MN=KC
=>MNCK là hình bình hành
b: Xét ΔBMC có
BH là đường cao
MNlà đường cao
BH cắt MN tại N
Do đó: N là trực tâm
c: MK//NC
mà NC vuông góc với BM
nên MK vuông góc với BM
hay góc BMK=90 độ
K,N xuất phát từ đâu bạn nhỉ??
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ