Giải bất phương trình với a là hằng số x + 1 a + a x > x + 2 a - 2 x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{x}{a}-x>4-a-\dfrac{3}{a}\)
\(\Leftrightarrow x\left(\dfrac{1}{a}-1\right)>\dfrac{4a-a^2-3}{a}\)
- Nếu \(\dfrac{1}{a}-1>0\Leftrightarrow0< a< 1\)
\(\Rightarrow x>\dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-1\right)}\Leftrightarrow x>a-3\)
- Nếu \(\dfrac{1}{a}-1< 0\Leftrightarrow\left[{}\begin{matrix}a< 0\\a>1\end{matrix}\right.\)
\(\Rightarrow x< \dfrac{4a-a^2-3}{a\left(\dfrac{1}{a}-a\right)}\Leftrightarrow x< a-3\)
2x+4<a2 -ax
2x-ax<a2 -4
(2-a)x<(a--2)(a+2)
-(2-a)x >(2-a)(2+a)
-x>2+a
=> x<-(2+a)
\(\Leftrightarrow2x+4+ax-a^2<0\)
\(\Leftrightarrow\left(2+a\right)x<\left(a-2\right)\left(a+2\right)\)
nếu a=-2=> vô nghiệm
nếu a<-2=>x>(a-2)
nếu a>-2=> x<(a-2)
ĐKXĐ: x\(\ne3,x\ne-3\)
\(\Rightarrow\left(x-a\right)\left(a-3\right)+\left(x+3\right)\left(a+3\right)=-6a\)
\(\Leftrightarrow xa-3x-a^2+3a+ax+3x+3a+3=-6a\)
\(\Leftrightarrow2ax-a^2+12a+3=0\) \(\Leftrightarrow2ax=a^2-12a-3\Leftrightarrow x=\dfrac{a^2}{2}-6a-\dfrac{3}{2}\)(TM)
Vậy...
\(\frac{ax-b}{a}+(a+b+1)x>\frac{2b}{a}\)
<=> \(x-\frac{b}{a}+\left(a+b+1\right)x>\frac{2b}{a}\)
<=> \(\left(a+b+2\right)x>\frac{3b}{a}\)
Giờ biện luận theo a và b thôi
Điều kiện xác định: a ≠ 0.
Ta có:
⇔ x( a + 2 ) > 1/a ( 1 )
+ Nếu a > - 2,a ≠ 0 thì nghiệm của bất phương trình là
+ Nếu a < - 2 thì nghiệm của bất phương trình là
+ Nếu x = - 2 thì ( 1 ) có dạng 0x > - 1/2 luôn đúng với ∀ x ∈ R