OLM cung cấp gói bải giảng điện tử PPT cho giáo viên đầu năm học
Thi thử và xem hướng dẫn giải chi tiết đề tham khảo 12 môn thi Tốt nghiệp THPT 2025
Tham gia cuộc thi "Nhà giáo sáng tạo" ẫm giải thưởng với tổng giá trị lên đến 10 triệu VNĐ
Mini game 20/11 tri ân thầy cô, nhận thưởng hấp dẫn - Tham gia ngay!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căn bậc hai của số phức z = -3 + 4i có kết quả:
A. w = 1 + 2i.
B. w = 1 - 2i.
C. 1 + 3i.
D. Tất cả sai.
Chọn D.
Giả sử w = x + yi là một căn bậc hai của số phức z = -3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là: z1 = 1 + 2i và z2 = -1 - 2i.
Xét các số phức z, w thỏa |z-1-3i| ≤ |z+2i| và |w+1+3i| ≤ |w-2i|. Giá trị nhỏ nhất của biểu thức P = |z-w| là
A. 3/13
B. 3 26 13
C. 26 4
D. 13 + 1 2
Đáp án B.
Cho số phức z thay đổi thỏa mãn z - 3 - 4 i ≤ 2 . Đặt w=(z-2)(2-2i)+1, tập hợp tất cả các điểm biểu diễn số phức w là một hình tròn có diện tích bằng
A. 8 π
B. 12 π
C. 16 π
D. 32 π
Cho số phức z thay đổi thỏa mãn z - 3 - 4 i ≤ 2 Đặt w = z - 2 2 - 2 i + 1 tập hợp tất cả các điểm biểu diễn số phức w là một hình tròn có diện tích bằng
Cho số phức z thỏa mãn z 2 - 2 z + 5 = ( z - 1 + 2 i ) ( z + 3 i - 1 ) .Tính min |w|, với w = z - 2 + 2 i
Đáp án C.
Cho số phức z thỏa mãn (1-3i)z+1+i=-z. Môđun của số phức w=13z+2i có giá trị bằng:
A. -2
B. 26 13
C. 10
D. - 4 13
Cho các số phức z, w thỏa mãn |z + 2 - 2i| = |z - 4i|, w=iz+1. Giá trị nhỏ nhất của |w| là:
Cho các số phức z, w thỏa mãn z + 2 - 2 i = z - 4 i ; w = i z + 1 . Giá trị nhỏ nhất của w là
A. 2 2
B. 2 2
C. 3 2
D. 5 2
Chọn A.
Phương pháp: Biến đổi đẳng thức
Cho các số phức z, w thỏa mãn z + 2 - 2 i = z - 4 i , w = i z + 1 . Giá trị nhỏ nhất của w là
Cho các số phức z, w thỏa mãn |z+2-2i|=|z-4i|, w=iz+1. Giá trị nhỏ nhất của |w| là:
C. 2
D. 3 2 2
Xét các số phức z, w thỏa mãn z + 2 − 2 i = z − 4 i và w = i z + 1 . Giá trị nhỏ nhất của w bằng?
A. 2
C. 3 2 2
D. 2 2
Chọn D.
Giả sử w = x + yi là một căn bậc hai của số phức z = -3 + 4i.
Ta có:
Do đó z có hai căn bậc hai là: z1 = 1 + 2i và z2 = -1 - 2i.