Giải các phương trình sau: ( 5 x 2 - 2 x + 10 ) 2 = ( 3 x 2 + 10 x - 8 ) 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`1)(x+2)(x+3)(x-7)(x-8)=144`
`<=>[(x+2)(x-7)][(x+3)(x-8)]=144`
`<=>(x^2-5x-14)(x^2-5x-24)=144`
`<=>(x^2-5x-19)^2-25=144`
`<=>(x^2-5x-19)^2-169=0`
`<=>(x^2-5x-6)(x^2-5x-32)=0`
`+)x^2-5x-6=0`
`<=>` $\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.$
`+)x^2-5x-32=0`
`<=>` $\left[ \begin{array}{l}x=\dfrac{5+3\sqrt{17}}{2}\\x=\dfrac{5-3\sqrt{17}}{2}\end{array} \right.$
Vậy `S={-1,6,\frac{5+3\sqrt{17}}{2},\frac{5-3\sqrt{17}}{2}}`
1: Ta có: \(\left(x+2\right)\left(x+3\right)\left(x-7\right)\left(x-8\right)=144\)
\(\Leftrightarrow\left(x^2-7x+2x-14\right)\left(x^2-8x+3x-24\right)=144\)
\(\Leftrightarrow\left(x^2-5x-14\right)\left(x^2-5x-24\right)-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+336-144=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-38\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)^2-6\left(x^2-5x\right)-32\left(x^2-5x\right)+192=0\)
\(\Leftrightarrow\left(x^2-5x\right)\left(x^2-5x-6\right)-32\left(x^2-5x-6\right)=0\)
\(\Leftrightarrow\left(x^2-5x-6\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+1\right)\left(x^2-5x-32\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+1=0\\x^2-5x-32=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-1\\x=\dfrac{5-3\sqrt{17}}{2}\\x=\dfrac{5+3\sqrt{17}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{6;-1;\dfrac{5-3\sqrt{17}}{2};\dfrac{5+3\sqrt{17}}{2}\right\}\)
Câu 1 :
a, \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}=\frac{2x-1}{3}-\frac{3-x}{4}\)
\(\Leftrightarrow\frac{6x+3}{4}+\frac{3-x}{4}=\frac{2x-1}{3}+\frac{5x+3}{6}\)
\(\Leftrightarrow\frac{5x+6}{4}=\frac{9x+1}{6}\Leftrightarrow\frac{30x+36}{24}=\frac{36x+4}{24}\)
Khử mẫu : \(30x+36=36x+4\Leftrightarrow-6x=-32\Leftrightarrow x=\frac{32}{6}=\frac{16}{3}\)
tương tự
\(\frac{19}{4}-\frac{2\left(3x-5\right)}{5}=\frac{3-2x}{10}-\frac{3x-1}{4}\)
\(< =>\frac{19.5}{20}-\frac{8\left(3x-5\right)}{20}=\frac{2\left(3-2x\right)}{20}-\frac{5\left(3x-1\right)}{20}\)
\(< =>95-24x+40=6-4x-15x+5\)
\(< =>-24x+135=-19x+11\)
\(< =>5x=135-11=124\)
\(< =>x=\frac{124}{5}\)
a: \(\Leftrightarrow\left(4x+14\right)^2-\left(3x+9\right)^2=0\)
=>(4x+14+3x+9)(4x+14-3x-9)=0
=>(7x+23)(x+5)=0
=>x=-23/7 hoặc x=-5
\(a,\\ \Leftrightarrow7x^2+58x+115=0\\ \Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x+5=0\\7x+23=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-\dfrac{23}{7}\end{matrix}\right.\)
\(b,\\ \Leftrightarrow\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]=0\\ \Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)=0\\ \LeftrightarrowĐặt.x^2+6x+5=a\\ \Leftrightarrow a=a\left(a+3\right)=10\\ \Leftrightarrow a^2+3a-10=0\\ \Leftrightarrow\left(a+5\right)\left(a-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=-5\\a=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2+6x+5=-5\\x^2+6x+5=2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x^2+6x+10=0\\x^2+6x+3=0\end{matrix}\right.\\ \left(Vô.n_o\Delta=36-40=-4< 0\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)
\(a,4\left(x-3\right)^2-\left(2x-1\right)^2< 10\)
\(\Leftrightarrow4\left(x^2-6x+9\right)-\left(4x^2-4x+1\right)-10< 0\)
\(\Leftrightarrow4x^2-24x+36-4x^2+4x-1-10< 0\)
\(\Leftrightarrow-20x< -25\)
\(\Leftrightarrow x>\dfrac{5}{4}\)
\(b,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)\le3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3-2x^2+4x+2x^2-4x+8\right)\le3\)
\(\Leftrightarrow x^3-25x-\left(x^3+8\right)\le3\)
\(\Leftrightarrow x^3-25x-x^3-8-3\le0\)
\(\Leftrightarrow-25x\le11\)
\(\Leftrightarrow x\ge-\dfrac{11}{25}\)
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
a. 3(x-2)-10=5(2x + 1)
<=> 3x - 6 - 10 = 10x + 5
<=> 3x - 10x = 5 + 6 + 10
<=> -7x = 21
<=> x = -3
b. 3x + 2=8 -2(x-7)
<=> 3x + 2 = 8 - 2x + 14
<=> 3x + 2x = 8 + 14 - 2
<=> 5x = 20
<=> x = 4
c. 2x-(2+5x)= 4(x + 3)
<=> 2x - 2 - 5x = 4x + 12
<=> 2x - 5x - 4x = 12 + 2
<=> -7x = 14
<=> x = -2
d. 5-(x +8)=3x + 3(x-9)
<=> 5 - x - 8 = 3x + 3x - 27
<=> -x - 3x - 3x = -27 + 8 - 5
<=> -7x = -24
<=> x = 24/7
e. 3x - 18 + x= 12-(5x + 3)
<=> 3x - 18 + x = 12 - 5x - 3
<=> 3x + x - 5x = 12 - 3 + 18
<=> -x = 27
<=> x = - 27
1) Ta có: \(4x+8=3x-1\)
\(\Leftrightarrow4x-3x=-1-8\)
\(\Leftrightarrow x=-9\)
2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)
\(\Leftrightarrow10-5x-15-3x+3>0\)
\(\Leftrightarrow-8x>2\)
hay \(x< \dfrac{-1}{4}\)
1) * Xét \(x\ge-8\) thì \(x+8\ge0\)nên \(|x+8|=x+8\)
Đặt PT là A
A trở thành: x+8=4x-10
\(\Leftrightarrow x-4x=-10-8\)
\(\Leftrightarrow-3x=-18\)
\(\Leftrightarrow x=\frac{-18}{-3}=6\)( thỏa ĐK vì x>-8)
* Xét \(x< -8\)thì\(x+8< 0\)nên \(|x+8|=-\left(x+8\right)=-x-8\)
A trở thành: \(-x-8=4x-10\)
\(\Leftrightarrow-x-4x=-10+8\)
\(\Leftrightarrow-5x=-2\)
\(\Leftrightarrow x=\frac{-5}{-2}=\frac{5}{2}\)(không thỏa Đk vì 5/2>-8)
Vậy tập nghiệm của PT đã cho là: S={6}
2) * Xét \(x\ge9\)thì\(x-9\ge0\)nên \(|x-9|=x-9\)
ĐẶT PT ĐỀ CHO LÀ B
B trở thành:\(x-9=2x+13\)
\(\Leftrightarrow x-2x=13+9\)
\(\Leftrightarrow-x=22\)
\(\Leftrightarrow x=-22\)(không thòa Đk do x<9)
*Xét \(x< 9\)thì\(x-9< 0\)nên \(|x-9|=-\left(x-9\right)=9-x\)
B trở thành:9-x=2x+13
\(\Leftrightarrow-x-2x=13-9\)
\(\Leftrightarrow-3x=4\)
\(\Leftrightarrow x=\frac{4}{-3}=\frac{-4}{3}\)(thỏa Đk vì x<9)
Vậy tập nghiệm của PT đã cho là: S={-4/3}
giúp bạn được nhiêu đó tk mk nha
e) ĐK : \(\left\{{}\begin{matrix}1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x\ne-1\\3x\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}=\dfrac{\left(1-3x\right)^2-\left(1+3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}\)
\(\Leftrightarrow12\left(1+3x\right)\left(1-3x\right)=\left(1-3x\right)\left(1+3x\right)\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)\)
\(\Leftrightarrow12=\left(-6x\right).2\Leftrightarrow6=-6x\)
\(\Leftrightarrow x=-1\left(TM\right)\)
Vậy phương trình đã cho có tập nghiệm S = {- 1/2; 3}.