Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y+6z+m=0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Tìm m để d nằm trong (P).
A. m = –20.
B. m = 20
C. m = 0
D. m = –10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Đường thẳng ∆ có vecto chỉ phương u ∆ → = 1 ; 1 ; - 1 .
Một mặt phẳng P có vecto pháp tuyến n p → = 1 ; 2 ; 3
Gọi I = ∆ ∩ P , tọa độ I là nghiệm của hệ phương trình:
x + 2 1 = y - 2 1 = z - 1 x + 2 y - 3 z + 4 = 0 ⇒ I - 3 ; 1 ; 1
Do d ⊂ P d ∩ ∆ ≢ ∅ ⇒ I ∈ d và d ⊂ P d ⊥ ∆
⇒ Đường thẳng d có một vecto chỉ phương u d → = u ∆ → , n P → = - 1 ; 2 ; 1
Vậy d : x + 3 - 1 = y - 1 2 = z - 1 1 .