Đồ thị (C) của hàm số y = 3 x + 1 x - 1 cắt trục tung tại điểm A. Tiếp tuyến của (C) tại A có phương trình là
A. y = - 4 x + 1 .
B. y = - 5 x - 1
C. y = 4 x - 1
D. y = 5 x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
Đáp án A
Ta có y ' = − 1 x + 1 2 ; C ∩ O y = 0 ; 2 ⇒ y ' 0 = − 1
Do đó PTTT là: y = − x + 2
Đáp án D
Phương pháp:
+) Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x o .
+) Tìm giao điểm của tiếp tuyến với các trục tọa độ.
+) Tính OA, OB, giải phương trình tìm x o → Phương trình tiếp tuyến và kết luận.
Đáp án A.
Tập xác định: D = ℝ \ { 1 } . Đạo hàm y ' = - 4 x - 1 2 .
Ta có A = O y ∩ ( C ) → A 0 ; 1 . Suy ra tiếp tuyến của (C) tại A có hệ số góc là k = y ' 0 = - 4 . Phương trình tiếp tuyến là y = - 4 x - 0 + 1 ⇔ y = - 4 x + 1 .