tính
1/4 +1/12+1/24+1/40+1/60+1/84
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1/2+1/6+1/12+1/20+1/30+1/42
=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7
=1/1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
Cho tg tren la A
A=\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(A=2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)
\(A=2\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(A=2.\frac{3}{7}\)
\(A=\frac{6}{7}\)
Ta co :
\(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(=2\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{14}\right)\)
\(=2.\frac{3}{7}\)
\(=\frac{6}{7}\)
Đặt A = 1/4 + ... +1/84
A = 2/8 + 2/24 + ... + 2/168
A = 2/2.4 + 2/4.6 + ... + 2/12.14
A = 1/2 - 1/4 + 1/4 - 1/6 + .. + 1/12 - 1/14
A = 1/2 - 1/14
A = 6/14 = 3/7
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)
\(A=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+\frac{2}{80}+\frac{2}{120}+\frac{2}{168}\)
\(A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)
\(A=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{12}\right)+\left(\frac{1}{12}-\frac{1}{14}\right)\)
\(A=\frac{1}{2}-\frac{1}{14}\)
\(A=\frac{3}{7}\)
Vậy \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}=\frac{3}{7}\)
\(A=\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}\)NHÂN CẢ TỬ VÀ MẪU CỦA TỪNG P/S VỚI 2 TA ĐƯỢC:
\(A=\frac{2}{8}+\frac{2}{24}+\frac{2}{48}+\frac{2}{80}+\frac{2}{120}+\frac{2}{168}\)
\(A=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{12.14}\)
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{12}-\frac{1}{14}\)
\(A=\frac{1}{2}-\frac{1}{14}\)
\(A=\frac{3}{7}\)
ta có: A = 1/4 + 1/12 + 1/24 + 1/40 + 1/60 + 1/84
= 2 ( 1/2*4 + 1/4*6 + 1/6*8 + 1/8*10 + 1/10*12 + 1/12*14 )
= 2 ( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + 1/8 - 1/10 + 1/10 - 1/12 + 1/12 - 1/14 )
= 2 ( 1/2 - 1/14 )
= 6/7
K = \(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112}\)
\(=\frac{1}{2}\times\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}+\frac{1}{6\times7}+\frac{1}{7\times8}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(=\frac{1}{2}\times\left(1-\frac{1}{8}\right)\)
\(=\frac{1}{2}\times\frac{7}{8}=\frac{7}{16}\)
\(\dfrac{1}{4}\) + \(\dfrac{1}{12}\) + \(\dfrac{1}{24}\) + \(\dfrac{1}{40}\) + \(\dfrac{1}{60}\) + \(\dfrac{1}{84}\) + \(x\) = 1
\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.6}\)+\(\dfrac{1}{2.12}\)+\(\dfrac{1}{2.20}\) + \(\dfrac{1}{2.30}\) + \(\dfrac{1}{2.42}\) + \(x\) =1
\(\dfrac{1}{2}\).(\(\dfrac{1}{2}\) + \(\dfrac{1}{6}\)+\(\dfrac{1}{12}\)+\(\dfrac{1}{20}\) + \(\dfrac{1}{30}\)+ \(\dfrac{1}{42}\)) + \(x\) = 1
\(\dfrac{1}{2}\).( \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\) + \(\dfrac{1}{6.7}\)) + \(x\) = 1
\(\dfrac{1}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\)) + \(x\) = 1
\(\dfrac{1}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{7}\)) + \(x\) = 1
\(\dfrac{1}{2}\).\(\dfrac{6}{7}\) + \(x\) = 1
\(\dfrac{3}{7}\) + \(x\) = 1
\(x\) = 1 - \(\dfrac{3}{7}\)
\(x\) = \(\dfrac{4}{7}\)
3/7
tick đi đúng đó