Một chiếc thuyền khổ hành từ bến sông A. Sau 5h 20' một canô chạy từ A đuổi theo và đuổi kịp thuyền tại một điểm cách bếm A 20km. Tính vận tốc của canô biết rằng thuyền chạy chậm hơn canô 12km/h ( vận tốc nc k đáng kề)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
40 phút = 2/3 giờ
Đặt vận tốc ca nô là x thì vận tốc thuyền máy là x-5
Thời gian ca nô chạy từ A đến chỗ gặp nhau là \(\frac{40}{x}\)
Thời gian thuyền máy chạy từ A đến chỗ gặp nhau là \(\frac{40}{x-5}\)
Ta có phương trình \(\frac{40}{x-5}-\frac{40}{x}=\frac{2}{3}\left(x>0;x\ne5\right)\)
\(\Leftrightarrow x^2-5x-150=0\Leftrightarrow\orbr{\begin{cases}x_1=-10\\x_2=15\end{cases}}\)
Đối chiếu với đk của x nên \(x_2=15\) được chọn
Vậy vận tốc của ca nô là 15 km/h
Mình sửa chỗ
Gọi vận tốc của thuyền là x ( km/h ) nha chứ ko phải x 9 km/h ) đâu thông cảm xíu
Gọi vận tốc của thuyền là x 9 km/h )
Vận tốc của ca nô là x + 12 ( km/h )
Thời gian thuyền đi : \(\frac{20}{x}\)
Thời gian ca nô đi : \(\frac{20}{x+12}\)
Đổi \(5h20'=\frac{16}{3}\left(h\right)\)
Vì ca nô đuổi khởi hành sau thuyền \(\frac{16}{3}\left(h\right)\)nên ta có phương trình :
\(\frac{20}{x}-\frac{20}{x+12}=\frac{16}{3}\)
\(\Leftrightarrow\)\(\frac{3.20\left(x+12\right)-3.20x}{3x\left(x+12\right)}=\frac{16x\left(x+12\right)}{3x\left(x+12\right)}\)
\(\Leftrightarrow\)\(16x^2+192-720=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x=3\\x=-15\end{cases}}\) x = 3 ( nhận ) ; x = -15 ( loại )
Vậy vận tốc của thuyền là 3 km/h
Gọi vận tốc của chiếc thuyền là : x (km/h; x>0) thì vận tốc Cano là x+12 (km/h).
Đổi 5h20 phút = 16 / 3 h
Quãng đường thuyền đi được sau 16/3h là : 16x/3
Thời gian để cano đuổi theo được thuyền là: \(\frac{\frac{16x}{3}}{\left(x+12\right)-x}=\frac{4x}{9}\)
Vận tốc của cano: \(x+12=20\div\frac{4x}{9}=\frac{45}{x}\Leftrightarrow x^2+12x-45=0\Rightarrow\orbr{\begin{cases}x=3\\x=-15\end{cases}}\)
Vậy vận tốc của thuyền là 3km/h
Tớ bt lm rùi . Ai chưa bt thì đây :
Bài giải :
Đổi : 1 giờ 30 phút = 1,5 giờ
Hiệu vận tốc 2 xe là :
18 : 1,5 = 12 ( km/giờ )
Ta có sơ đồ :
Hiệu số phần bằng nhau là :
3 - 1 = 2 ( phần )
Vận tốc của canô khi xuôi dòng là :
12 : 2 x 3 = 18 ( km/giờ )
Vận tốc thực của canô là :
18 - 1,5 = 16,5 ( km/giờ )
Đ/S : 16,5 km/giờ
gọi vận tốc thuyền là a km/h(đk :a>0)thì vận tốc ca nô là a+12 km/h
5h20'=\(5\frac{1}{3}\)h=\(\frac{16}{3}\)(h)
sau 5h20' thuyền đi được quảng đường:16/3.a(km)
thời gian để ca nô bắt kịp thuyền:\(\frac{\frac{16}{3}a}{12}=\frac{4}{9}a\left(h\right)\)
khi đó thuyền đi thêm được: 4/9 a2(km)
mà điểm gặp cách A 20 km nên ta có pt:\(\frac{4}{9}a^2+\frac{16}{3}a=20\Leftrightarrow\left[\begin{matrix}a=3\\a=-15\end{matrix}\right.\)
mà a>0 => a=3(t/m a>0)
vậy vận tốc của thuyền là 3 km/h => vận tốc ca nô: 3+12=15km/h
Gọi vận tốc thuyền là x (km/h)
Vận tốc cano là: x + 12 (km/h)
Thời gian thuyền đi là: \(\frac{20}{x}\left(h\right)\)
Thời gian cano đi là: \(\frac{20}{x+12}\left(h\right)\)
Theo đề bài ta có:
\(\frac{20}{x}-5-\frac{1}{3}=\frac{20}{x+12}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-15\left(l\right)\\x=3\end{cases}}\)
Bạn có thể giải chi tiết phương trình được không alibaba nguyễn
Đổi : 5 giờ 20 phút = \(\frac{16}{3}\) giờ .
- Gọi vận tốc của chiếc ca nô là x ( km/h, x > 12 )
- Gọi vận tốc của chiếc thuyền là y ( km/h, y > 0 )
Theo đề bài trong 1h thì ca nô chạy nhanh hơn thuyền 12km nên ta có phương trình : \(x-y=12\left(I\right)\)
- Quãng đường thuyền chạy đến lúc ca nô xuất phát là : \(\frac{16y}{3}\left(km\right)\)
- Thời gian ca nô đến điểm gặp là : \(\frac{20}{x}\) ( giờ )
- Quãng đường thuyền chạy từ lúc ca nô xuất phát là : \(\frac{20y}{x}\left(km\right)\)
Theo đề bài một chiếc thuyền khởi hành từ bến sông A sau 5h 20phút, một ca nô từ bến A đuổi theo và gặp thuyền tại vị trí B cách bến A 20km nên ta có phương trình : \(\frac{16y}{3}+\frac{20y}{x}=20\left(II\right)\)
Từ ( I ) và ( II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x-y=12\\\frac{16y}{3}+\frac{20y}{x}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y}{3}+\frac{20y}{12+y}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\frac{16y\left(12+y\right)}{3\left(12+y\right)}+\frac{60y}{3\left(12+y\right)}=20\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(12+y\right)+60y=60\left(12+y\right)\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\192y+16y^2+60y=720+60y\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2+192y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y^2-48y+240y-720=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(y-3\right)+240\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\16y\left(y-3\right)+240\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left(16y+240\right)\left(y-3\right)=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y-3=0\\16y+240=0\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+y\\\left[{}\begin{matrix}y=3\left(TM\right)\\y=-15\left(KTM\right)\end{matrix}\right.\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=12+3=15\\y=3\end{matrix}\right.\) ( TM )
Vậy vân tốc của chiếc thuyền là 3km/h .