K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Đáp án D

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBEC vuông tại B có BA là đường cao ứng với cạnh huyền CE, ta được:

\(BA^2=AE\cdot AC\)

\(\Leftrightarrow AE=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)

Xét ΔABC vuông tại A có

\(\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{12}{16}=\dfrac{3}{4}\)

nên \(\widehat{C}\simeq36^052'\)

b) Xét ΔMAB vuông tại M và ΔABE vuông tại A có 

\(\widehat{MAB}=\widehat{ABE}\)(hai góc so le trong, AM//BE)

Do đó: ΔMAB\(\sim\)ΔABE(g-g)

 

8 tháng 8 2021

mk cần câu c và d ạ

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
2 tháng 1 2020

1) hình tự vẽ nhé

a) Vì ABCD là hình thoi (gt)

\(\Rightarrow AB=BC\left(đn\right)\)

\(\Rightarrow\Delta ABC\)cân tại B

Mà \(\widehat{B}=60^0\)

\(\Rightarrow\Delta ABC\)là tam giác đều

b) Vì \(\Delta ABC\)đều(cmt)\(\Rightarrow AB=BC=AC=a\)

Gọi O là giao điểm 2 đường chéo BD và AC

Vì ABCD là hình thoi (gt) \(\Rightarrow DB\perp AC\left(tc\right)\)

\(\Rightarrow BO\perp AC\)

Vì tam giác ABC đều mà trong tam giác ABC thì BO là đường cao ứng với cạnh AC

\(\Rightarrow BO\)là đường trung tuyến ứng vs cạnh AC(tc)

\(\Rightarrow O\)là trung điểm của AC

\(\Rightarrow AO=OC=\frac{1}{2}AC=\frac{1}{2}a\)

Áp dụng định lý Py-ta-go vào tam giác BOC vuông tại O ta được:

\(BO^2+OC^2=BC^2\)

\(BO^2+\frac{1}{4}a^2=a^2\)

\(BO^2=\frac{3}{4}a^2\)

\(\Rightarrow BO=\frac{\sqrt{3}}{2}a\)

Ta có: \(S_{ABC}=\frac{1}{2}BO.AC=\frac{1}{2}.\frac{\sqrt{3}a}{2}.a\)

                                               \(=\frac{\sqrt{3}}{4}a^2\)

CMTT \(S_{ADC}=\frac{\sqrt{3}}{4}a^2\)

\(S_{ABCD}=S_{ADC}+S_{ABC}=\frac{\sqrt{3}}{2}a^2\)

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

\(\widehat{ACB}\) chung

Do đó: ΔABC đồng dạng với ΔHAC

b: Xét ΔKHB vuông tại K và ΔKAH vuông tại K có

\(\widehat{KHB}=\widehat{KAH}\left(=90^0-\widehat{B}\right)\)

Do đó: ΔKHB đồng dạng với ΔKAH

=>\(\dfrac{KH}{KA}=\dfrac{KB}{KH}\)

=>\(KH^2=KA\cdot KB\)

c: Ta có: ΔAHC vuông tại H

=>\(HC^2+HA^2=AC^2\)

=>\(HA^2=10^2-8^2=36\)

=>\(HA=\sqrt{36}=6\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{6^2}{8}=4,5\left(cm\right)\)

BC=BH+CH

=4,5+8

=12,5(cm)

Xét ΔABC có AH là đường cao

nên \(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot12,5\cdot6=3\cdot12,5=37,5\left(cm^2\right)\)

21 tháng 10 2021

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

c: \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{6\cdot4.5}{2}=3\cdot4.5=13.5\left(cm^2\right)\)