với a,b,c là các số không amm thỏa mãn a+b+c=2,TÌm GTLN và GTNN của
P=\(a+b^2+c^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo:
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\s... - Hoc24
Ta có:
P = a + b + c ≤ a + b + a + b = 2(a + b) ≤ 2(-1) = -2
Ta cũng có:
P = a + b + c ≤ a + b + c - 2abc ≥ a + b + c - 2(-1)(-1)(-1) = -3
Vậy GTNN của P = -3 và GTLN của P = -2.
Lời giải:
Vì $a,b,c$ không âm và $a+b+c=2\Rightarrow 0\leq a,b,c\leq 2$
Khi đó:
$a\leq 12a$
$2b^2=2b.b\leq 4b\leq 12b$
$3c^3=3c^2.c\leq 3.2^2.c=12c$
$\Rightarrow P=a+2b^2+3c^3\leq 12(a+b+c)=24$
Vậy $P_{\max}=24$ khi $(a,b,c)=(0,0,2)$
đặt \(t=ab+bc+ca\)
\(=>t=ab+bc+ca\le\frac{1}{3}\left(a+b+c\right)^2=3\)
mặt khác
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(=>a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\)
khi đó
\(P=\frac{9-2t}{t}\)(zới t nhỏ hơn hoặc = 3)
xét \(f\left(t\right)=\frac{9-2t}{t}\left(t\le3\right)\)
\(f'\left(t\right)=-\frac{9}{t^2}< 0\)
=> f(t) N Biến \(\left(-\infty,3\right)\)
min f(t)=f(3)=1
koo tồn tại max\(f\left(t\right)\)
zậy minP=1 khi a=b=c=1
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24