Cho đường tròn (C) có phương trình x 2 + y 2 + 4 x − 2 y − 4 = 0 . Phương trình các tiếp tuyến của đường tròn song song với đường thẳng ∆: x + 2y – 5 = 0 là
A. x + 2 y + 5 ± 3 5 = 0
B. x + 2 y ± 3 = 0
C. x + 2 y ± 3 √ 5 = 0
D. x + 2 y = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để tìm phương trình đường tròn © có tâm I(2,3) đi qua điểm A(5,7), ta sử dụng công thức khoảng cách từ điểm đến tâm đường tròn:
$I\hat{A} = \sqrt{(x_A - x_I)^2 + (y_A - y_I)^2}$
Với I là tâm đường tròn, A là điểm trên đường tròn.
Ta có: $x_I = 2$, $y_I = 3$, $x_A = 5$, $y_A = 7$
Thay vào công thức ta được:
$\sqrt{(5-2)^2 + (7-3)^2} = \sqrt{34}$
Vậy bán kính của đường tròn là $\sqrt{34}$.
Phương trình đường tròn © có tâm I(2,3) và bán kính $\sqrt{34}$ là:
$(x-2)^2 + (y-3)^2 = 34$
b) Để tìm phương trình tiếp tuyến của đường tròn © : $(x-1)^2 + ( y+5)^2 =4$, ta cần tìm đạo hàm của phương trình đường tròn tại điểm cần tìm tiếp tuyến.
Ta có phương trình đường tròn chính giữa:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Tại điểm M(x,y) trên đường tròn, ta có:
$(x-1)^2 + (y+5)^2 = 2^2$
Đạo hàm hai vế theo x:
$2(x-1) + 2(y+5)y' = 0$
Suy ra:
$y' = -\frac{x-1}{y+5}$
Vậy tại điểm M(x,y), phương trình tiếp tuyến của đường tròn là:
$y - y_M = y'(x-x_M)$
Thay $y'$ bằng $\frac{-(x-1)}{y+5}$ và $x_M$, $y_M$ bằng 1, -5 ta được:
$y + 5 = \frac{-(x-1)}{y+5}(x-1)$
Simplifying:
$x(y+5) + y(x-1) = 6$
Đường thẳng (d) có phương trình là $3x + 4y - 1 = 0$. Vì tiếp tuyến song song với đường thẳng (d) nên hệ số góc của tiếp tuyến
(C): (x-1)^2+(y+2)^2=4
=>R=2; I(1;-2)
Vì (d)//Δ nên (d): 4x-3y+c=0
\(d\left(I;\left(d\right)\right)=2\)
=>\(\dfrac{\left|1\cdot4+\left(-2\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=2\)
=>|c+4+6|=10
=>|c+10|=10
=>c=0 hoặc c=-20
=>4x-3y=0 hoặc 4x-3y-20=0
Đáp án: B
(C): x 2 + y 2 - 2x + 6y + 8 = 0
⇔ (x - 1 ) 2 + (y + 3 ) 2 = 2 có I(1;-3), R = 2
Gọi d’ là tiếp tuyến của đường tròn (C) và song song với d
Vì d'//d ⇒ d': x + y + c = 0, (c ≠ 4)
d’ là tiếp tuyến của (C) nên d(I;d') = R
Đáp án A
Phương trình tiếp tuyến có dạng
∆: 2x+ y+ m= 0.
Đường tròn (C) :
(x- 3) 2+ (y +1) 2= 5 có tâm I( 3; -1) và bán kính
Đường thẳng tiếp xúc với đường tròn (C) khi
Vậy có 2 đường thẳng thỏa mãn là:
2x+ y= 0 và 2x+ y -10= 0
(x-1)^2+(y+2)^2=10
=>R=căn 10; I(1;-2)
Vì (d)//x+3y-5=0
nên (d): x+3y+c=0
Theo đề, ta có: d(I;(d))=can 10
=>\(\dfrac{\left|1\cdot1+3\cdot\left(-2\right)+c\right|}{\sqrt{1^2+3^2}}=\sqrt{10}\)
=>|c-5|=10
=>c=15 hoặc c=-5
(d')//(d)
=>(d'): 4x-3y+c=0
(C): x^2-4x+4+y^2+6y+9-16=0
=>(x-2)^2+(y+3)^2=16
=>R=4; I(2;-3)
Theo đề, ta có: d(I;(d'))=4
=>\(\dfrac{\left|2\cdot4+\left(-3\right)\cdot\left(-3\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=4\)
=>|c+17|=4*5=20
=>c=3 hoặc c=-37
Các phương trình song song với ∆: x+2y-5=0 có dạng d: x+2y+c=0
Từ đường tròn (C) ta có tâm I(-2;1) và bán kính R=3
Vì đường thẳng d là tiếp tuyến của đường tròn (C) nên ta có:
Vậy hai phương trình tiếp tuyến của đường tròn (C) là: x + 2 y + 3 5 = 0 và x + 2 y - 3 5 = 0 .