Cho A = n + 5 n + 4 với n thuộc Z. Tìm số nguyên n để phân số A có giá trị là số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
a, để B là phân số thì n khác 4
b, n/n-4 = 1+ 4/n-4 (dạng hỗn số)
Vì n thuộc Z => n-4 thuộc Ư(4)={1;-1;2;-2;4;-4} => n-4 thuộc Z
Ta có bảng sau:
n-4 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 5 | 3 | 6 | 2 | 8 | 0 |
TM | TM | TM | TM | TM | TM |
a) HS tự làm.
b) HS tự làm.
c) Phân số A có giá trị là số nguyên khi (n + 5):(n + 4) Từ đó suy ra l ⋮ (n + 4) hay n + 4 là ước của 1.
Do đó n ∈ (-5; -3).
a, \(A=\dfrac{n+5}{n+4}=\dfrac{n+4+1}{n+4}=1+\dfrac{1}{n+4}\Rightarrow n+4\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 4 | 1 | -1 |
n | -3 | -5 |
b, đk n khác 4
Gọi ƯCLN (n+5;n+4) = d ( d\(\in Z\))
n + 5 - n - 4 = 1 => d = 1
Vậy A là phân số tối giản với mọi giá trị nguyên, n khác 4
a,Không biết
b,Vì B có giá trị nguyên
suy ra n chia hết n-4
mà n chia hết cho n
suy ra n chia hết cho 4
Vậy n thuộc B(4)
a.Ta có để B là một phân số thì n-4 khác o
=>n>4
Vậy n>4 để B là một phân số
b.NX :Dể B có giá trị nguyên =>n chia hết cho n-4
Vì n-4 chia hết cho n-4 và n chia hết cho n-4
=>n-(n-4) chia hết cho n-4
=> n-4 là ước của4={1;-1;-2;2;4;-4}
=> ta có bảng phan tích sau
n-4 1 -1 2 -2 4 -4
n 5 3 6 2 8 0
Vậy n thuộc {5;3;6;2;8;0}
a)Để A là phân số \(\Leftrightarrow n+4\ne0\Leftrightarrow n\ne-4.\)
b) A= \(\frac{3n-5}{n+4}=\frac{3n+12-17}{n+4}=3-\frac{17}{n+4}.\)
A nhận giá trị nguyên <=>\(\frac{17}{n+4}nguyên\)
\(\Rightarrow n+4\inƯ\left(17\right)=\hept{\begin{cases}\\\end{cases}1;-1;17;-17}.\)
\(\Rightarrow n=-3;-5;13;-21\)
học tốt