K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2019

a) 3 u 2 − 8 u + 3 ( u 2 + 1 ) ( u − 1 )                  b) 1 − 4 u 4 ( 4 u + 1 )

14 tháng 2 2020

\(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow\left(3-1\right)A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)...\left(3^{64}+1\right)\)

\(\Leftrightarrow2A=3^{128}-1\)

\(\Leftrightarrow A=\frac{3^{128}-1}{2}\)

1 tháng 5 2018

\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

\(\Rightarrow A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}\) \(=\frac{a^2\left(a+1\right)+\left(a+1\right)+\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)

          \(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)

            \(=\frac{a^2+a-1}{a^2+a+1}\)

10 tháng 8 2015

\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+......+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+......+\frac{\sqrt{n-1}-\sqrt{n}}{\left(\sqrt{n-1}+\sqrt{n}\right)\left(\sqrt{n-1}-\sqrt{n}\right)}\)\(=\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+......+\frac{\sqrt{n-1}-\sqrt{n}}{n-1-n}\)

=\(-\left(\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+......+\sqrt{n-1}-\sqrt{n}\right)=-\left(1-\sqrt{n}\right)=\sqrt{n}-1\)

10 tháng 10 2020

1) Đặt \(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)

\(\Rightarrow3D=1+\frac{1}{3}+...+\frac{1}{3^{99}}\)

\(\Rightarrow3D-D=\left(1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Leftrightarrow2D=1-\frac{1}{3^{100}}\)

\(\Leftrightarrow D=\frac{3^{100}-1}{2\cdot3^{100}}\)

Vậy \(D=\frac{3^{100}-1}{2\cdot3^{100}}\)

2) Ta có: \(\frac{49}{58}\cdot\frac{2^5}{4^2}-\frac{7^2}{-58}\cdot3\)

\(=\frac{49}{58}\cdot2-\frac{49}{58}\cdot3\)

\(=-1\cdot\frac{49}{58}\)

\(=-\frac{49}{58}\)