K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2019

16 tháng 3 2018

Chọn B.

Gọi H là trung điểm của cạnh AD. Do tam giác SAD đều nên SH ⊥ AD

Gọi K là trung điểm của HB => MK//SH

Do đó: MK ⊥ ABCD => MK ⊥ (CNP).

Vậy MK là chiều cao của khối tứ diện CMNP.

Thể tích khối tứ diện CMNP là

9 tháng 9 2019

Đáp án là B

13 tháng 6 2019

19 tháng 6 2019

Đáp án B

Xét trục tọa độ Oxyz như hình vẽ, với O là trung điểm của AD

Chọn a = 1 =>  => Trung điểm của MN là 

Phương trình đường thẳng qua E, song song với Oz là

Gọi I là tâm mặt cầu cần tìm =>

Suy ra

Mà

Vậy

12 tháng 11 2018

Phương pháp:

+) Gắn hệ trục tọa độ.

26 tháng 9 2018

Đáp án C.

Chọn hệ trục tọa độ với H ≡ O 0 ; 0 ; 0   D 1 2 ; 0 ; 0 .  Chọn a = 1.

M 0 ; 1 ; 0 ; N 1 2 ; 1 2 ; 0 ; S 0 ; 0 ; 3 2 ; C 1 2 ; 1 ; 0 là: x = 1 4 y = 3 4 z = t ⇒ tâm mặt cầu có tọa độ K 1 4 ; 3 4 ; t  

Giải:

S K = K C ⇔ 1 16 + 9 16 + t − 3 2 2 = 1 16 + 1 16 + t 2 ⇔ t = 5 3 12 ⇒ R = K C = 93 12 .

8 tháng 6 2018

2 tháng 4 2016

D H S M B N C K A P

Gọi H là trung điểm của AD. Do tam giác SAD là tam giác đều nên SH vuông góc với AD

Do mặt phẳng (SAD) vuông góc với mặt phẳng (ABCD) nên SH vuông góc với BP(1)

Xét hình vuông ABCD ta có :

\(\Delta CDH=\Delta BCP\Rightarrow CH\perp BP\) (2)

Từ (1) và (2) ta suy ra \(BP\perp\left(SHC\right)\)

Vì \(\begin{cases}MN||SC\\AN||CH\end{cases}\) \(\Rightarrow\left(AMN\right)||\left(SHC\right)\)

\(\Rightarrow BP\perp\left(AMN\right)\Rightarrow BP\perp AM\)

Kẻ vuông góc với mặt phẳng (ABCD), K thuộc vào mặt phẳng (ABCD), ta có :

\(V_{CMNP}=\frac{1}{3}MK.S_{CNP}\)

Vì \(MK=\frac{1}{2}SH=\frac{a\sqrt{3}}{4};S_{CNP}=\frac{1}{2}CN.CP=\frac{a^2}{8}\)

\(\Rightarrow V_{CMNP}=\frac{\sqrt{3}a^2}{96}\)

25 tháng 11 2019

 

Chọn D.

Áp dụng công thức tìm nhanh bán kính mặt cầu ngoại tiếp hình chóp R 2 = x 2 + r 2 với

r là bán kính đường tròn ngoại tiếp đa giác đáy

x = S O 2 - r 2 2 h : S là đỉnh hình chóp , O là tâm đường tròn ngoại tiếp đa giác đáy, h là chiều cao hình chóp

Cụ thể vào bài toán:

Đáy là tam giác CMN vuông tại C

Tâm O của đường tròn ngoại tiếp tam giác CMN là trung điểm MN

Áp dụng công thức đường trung tuyến trong tam giác HMN tính được  H O 2 = 5 a 2 8

Trong tam giác vuông SHO có