K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Bạn áp dụng định lí pitago vào.

\(CD^2-CB^2=\left(AC^2+AD^2\right)-\left(AB^2+AC^2\right)=AD^2-AB^2\)

\(ED^2-EB^2=\left(AD^2+AE^2\right)-\left(AB^2+AE^2\right)=AD^2-AB^2\)

Vậy \(CD^2-CB^2=ED^2-EB^2\)

17 tháng 1 2016

bấm vào chữ Đúng 0 sẽ hiện ra kết quả 

23 tháng 1 2015

Xét tam giác ADE là tam giác vuông tại A => DC²= AD²+AC² (định lí Py-ta-go)

      tam giác ABE là tam giác vuông tại A => BE²= AB²+AE²(định lí Py-ta-go)

      tam giác ADE là tam giác vuông tại A => DE²= AD²+AE²(định lí Py-ta-go)

      tam giác ABC là tam giác vuông tại A => BC²= AB²+AC²(định lí Py-ta-go)

Ta có : CD²+ EB² =(AD²+AC²)+(AB²+AE²)

        =>  CD²+ EB² =AD²+AC²+AB²+AE²
        =>  CD²+ EB² =AD²+ AE²+AC²+AB²
        =>  CD²+ EB²= (
AD²+AE²)+(AB²+AC²)

        => CD²+ EB²= ED²+ CB²
        => CD²- CB² = ED²- EB² (dpcm

Xong r đó bạn, đúng đấy ko sai đâu, chép vào ^_^
 


 

 

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

** Sau khi đổi đề.

Áp dụng định lý Pitago ta có:

$CD^2-CB^2=(AD^2+AC^2)-(AB^2+AC^2)$

$=AD^2-AB^2(1)$

Lại có:

$ED^2-EB^2=(AD^2+AE^2)-(AB^2+AE^2)=AD^2-AB^2(2)$

Từ $(1); (2)\Rightarrow CD^2-CB^2=ED^2-EB^2$ (đpcm)

Hình vẽ:

AH
Akai Haruma
Giáo viên
8 tháng 1 2022

Lời giải:
Áp dụng định lý Pitago:

$CD^2-CB^2=(AC-AD)^2-(AB^2+AC^2)$

$=AC^2+AD^2-2AC.AD-AB^2-AC^2=AD^2-2ACAD-AB^2$

$=(ED^2-EA^2)-2AC.AD-(AE+BE)^2$

$=ED^2-EA^2-2AC.AD-AE^2-BE^2-2AE.BE$

$=(ED^2-EB^2)-(2AE^2+2AC.AD+2AE.BE)$

Đề có vấn đề không bạn?